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Abstract. Under the trend of intelligent transformation 

in modern agriculture, the contradiction between the 

efficiency and quality of tea picking urgently needs to 

be resolved. This study conducts tea detection 

optimization based on the YOLOv8 algorithm and 

constructs a complete technical path from theory to 

practice. The study first analyzes the network 

architecture of YOLOv8, combines the characteristics 

of the One-Stage algorithm, and clarifies its advantages 

in real-time tea detection. Through training and 

deployment on public datasets, the detection accuracy 

has been improved by 6.7% compared to the original 

YOLOv8, providing algorithmic support for 

mechanized picking. For the complex environment of 

tea gardens, a module optimization strategy is proposed: 

introducing a fusion attention module to generate a new 

C2fM module, and introducing asymmetric convolution 

to generate the ACBSPPF module. Through ablation 

experiments and cross-validation, the optimization 

effect was verified using mAP and FPS as indicators. 

The model has reached the industry-leading level in 

terms of real-time performance and accuracy. Research 

shows that the optimized YOLOv8 algorithm 

effectively solves the problem of tea detection. Finally, 

a tea detection system is designed using PyQt5, 

providing a feasible solution for the industrialization of 

intelligent picking technology. 

 

Keywords: YOLOv8; PyQt5; Tea detect; Attention 

fusion; Asymmetric convolution. 

1. Introduction 

Tea, as one of the world's three major beverages, has always attracted much attention in terms 

of its picking techniques and mechanized processing [1]. At present, the main methods of tea 

picking rely on manual picking and mechanical picking [2]. Manual tea picking has high labor 

costs and relatively low efficiency [3]; The "one-size-fits-all" mechanical picking method 
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results in uneven quality of the picked tea buds [4]. With the rapid development of deep learning 

object detection technology, the efficient picking of tea is the development trend of tea picking 

technology research, and the recognition and detection technology of tea is the key to the 

research [5]. 

In the context of the deep integration of artificial intelligence and agriculture, object detection 

technology has become a key driving force for enhancing the intelligent level of agricultural 

production. As a new-generation real-time object detection framework, YOLOv8, with its 

lightweight network architecture and advanced feature extraction mechanism, has achieved a 

significant improvement in inference speed while maintaining high-precision detection, 

demonstrating outstanding performance in fields such as industrial quality inspection and 

security monitoring. However, when it is applied to the tea-picking scenario, it faces technical 

challenges such as the diversity of leaf shapes, complex lighting environments, and overlapping 

occlusion, which urgently require targeted optimization strategies. 

This study focuses on the application bottleneck of YOLOv8 in tea target detection. By 

improving the network structure, optimizing the data preprocessing process and adjusting the 

model training strategy, a highly robust tea detection model is constructed. On the one hand, by 

designing a multi-scale feature fusion module and an adaptive attention mechanism, the model's 

recognition ability for tea at different growth stages is enhanced; On the other hand, a large-

scale dataset is constructed in combination with the actual environment of the tea garden, and 

techniques such as data augmentation and transfer learning are applied to enhance the 

generalization performance of the model. The research results will provide core algorithmic 

support for intelligent tea-picking equipment, helping to promote the transformation and 

upgrading of the traditional tea industry towards precision and efficiency. 

Chapter Introduction: 

This paper focuses on the research of tea detection based on YOLOv8 and PyQt5. The overall 

technical route is as follows: Firstly, analyze the network architecture of the YOLOv8 algorithm 

and the characteristics of the One-Stage algorithm to clarify its advantages in real-time tea 

detection; Secondly, a module optimization strategy is proposed for the complex environment 

of the tea garden. The C2fM module and the ACBSPPF module are constructed respectively 

by integrating the attention mechanism and introducing asymmetric convolution. Subsequently, 

the effectiveness of the improved algorithm was verified through comparative experiments and 

ablation experiments, and the model performance was evaluated with mAP and FPS as the core 

indicators. Finally, a tea detection system was designed based on PyQt5 to realize the 
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implementation of the algorithm from theoretical optimization to practical application. 

The main contents of the remaining parts are as follows: 

Part 2 "Theoretical Basis" Systematically expound the core concept of object detection and 

distinguish the differences between Two-Stages and One-Stage algorithms (taking Faster R-

CNN and the YOLO series as examples) This paper focuses on analyzing the network structure 

of YOLOv8 (input, backbone network, neck, output) and the working principles of key modules 

(such as C2f, SPPF) to provide theoretical support for subsequent improvements. 

Part 3 "Algorithm Improvement Methods": A detailed introduction to the design ideas of the 

two core improvement modules 

C2fM module: Integrates the MSA multi-head self-attention mechanism into the Bottleneck 

module, adds residual connections, and enhances the ability to capture multi-source features 

(appearance, texture, etc.) of tea. 

ACBSPPF module: It introduces asymmetric convolution (3×1, 3×3, and 1×3 convolution 

kernel combinations) to replace traditional convolution, reducing the computational load while 

enhancing adaptability to multi-scale tea targets. 

Part 4 "Algorithm Experiments": Experiments are conducted based on public tea datasets 

(including four types of tea with different freshness levels from T1 to T4), including: 

Dataset and experimental environment description (hardware configuration, parameter 

Settings); 

Comparative experiment: Compared with models such as YOLOv8, SSD, and Faster R-CNN, 

verify the advantages of the improved algorithm in terms of mAP, FPS, and parameter scale; 

Ablation experiment: Verify the optimization effects of C2fM and ACBSPPF modules 

individually and in combination, and quantify the improvement in detection accuracy, such as 

a 6.7% increase in mAP. 

Part 5 "Tea Detection Interface": This section introduces the design of a visualization system 

based on PyQt5, including interface layout (image selection, detection, and result export 

functions), operation process, and real-time detection effect display, to facilitate the application 

of algorithms. 

Part 6 "Conclusion": Summarize the core contributions of the improved algorithm, reaffirm 

the effectiveness of the C2fM and ACBSPPF modules, explain the system's promoting effect 

on the industrialization of intelligent tea picking, and look forward to future optimization 

directions, such as adaptation to complex occlusion scenarios. 
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2. Theoretical basis 

2.1. Concepts related to object detection 

In the field of computer vision, object detection algorithms can be classified into Two 

mainstream paradigms, two-stages and One-Stage, based on the differences in detection 

processes. The two show significant differences in detection mechanisms and performance. 

The Two-Stages object detection algorithm, represented by the R-CNN series, follows the 

detection logic of candidate selection first and then fine-tuning. Take Faster R-CNN [6] as an 

example. This algorithm integrates the candidate Region generation process into the Network 

architecture by introducing the Region Proposal Network (RPN), replacing the traditional 

selective search method. Specifically, the model first performs feature extraction on the input 

image in the backbone network. Then, RPN generates a series of candidate regions that may 

contain the target based on the feature map. Finally, the candidate regions are feature aligned 

through operations such as ROI Pooling, and bounding box regression and category 

classification are completed in the head network. This type of algorithm, with its phased 

processing strategy, can fully explore the details of target features and demonstrate high 

detection accuracy in complex scenarios. However, the high number of parameters and long 

reasoning time brought about by multi-stage computing limit its application in scenarios with 

high real-time requirements. 

In contrast, One-Stage object detection algorithms such as the SSD and YOLO series adopt 

an end-to-end direct regression mode, transforming object detection into a direct prediction 

problem of bounding box coordinates and category probabilities [7-8]. Take YOLOv8 as an 

example. The model rapidly extracts image features through a lightweight backbone network, 

uses a neck network for multi-scale feature fusion, and ultimately directly outputs the position 

and category information of the target on the detection head. This paradigm significantly 

reduces the computational complexity by minimizing the intermediate candidate region 

generation steps, achieving millisecond-level inference speed and meeting the real-time 

scenario requirements of industrial quality inspection, autonomous driving, etc. Although there 

are accuracy shortcomings in small target detection and complex background recognition, with 

the development of network structure optimization and data augmentation technology, the 

detection accuracy of the One-Stage algorithm is gradually approaching that of the Two-Stages 

algorithm, demonstrating strong application potential. 
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2.2 Principles of the YOLOv8 Algorithm 

The network structure of YOLOv8 mainly consists of four parts: input, backbone, neck and 

output [9]. In the input section, image data is usually received, which can come from high-

resolution images collected by devices such as drones, ground robots or fixed cameras. The 

main part is responsible for extracting the features of the input image and usually adopts 

structures such as CSPDarknet53. For instance, drawing on the idea of VGG [10], a large 

number of 3×3 convolution is used, and the number of channels is doubled after each pooling 

operation. It also drew on the idea of ResNet [11], extensively using residual connections in the 

network, which alleviated the problem of vanishing gradients during training and made the 

model more convergent. The neck part is responsible for fusing the multi-scale features 

extracted by the backbone network, usually adopting structures such as PANet. For instance, 

three feature maps of different scales are concatenated through upsampling, and after 

processing, feature maps of different scales are output to the output part [12]. The output section 

is responsible for predicting the target box and category probability. It usually adopts a three-

layer prediction structure, with each scale prediction feature predicting targets of different range 

sizes to improve the detection accuracy of the model. 

The network structure of YOLOv8 mainly consists of three parts: the Backbone, the Neck 

and the detection Head. The main part is responsible for extracting the features of the input tea 

image, and usually adopts modules such as CBS, C2f and SPPF. The neck part achieves the 

fusion of multi-scale features, and combined with the precise prediction of the output part, it 

can accurately determine the position and category of the tea leaves. 

In terms of performance, the data augmentation strategy of YOLOv8 has greatly enhanced 

the accuracy and robustness of detection. Data augmentation methods such as color perturbation 

and spatial perturbation enable the model to adapt to images under different lighting conditions, 

environmental changes, and from various perspectives and postures. For instance, in actual tea 

detection, the intensity and Angle of light at different times can have a significant impact on tea 

images. By adjusting the hue, saturation and brightness of the images, the model can better cope 

with these changes. Random cropping, scaling, rotation and flipping operations increase the 

diversity of the training data, enabling the model to learn more characteristics of tea types under 

different conditions, thereby improving the accuracy of the algorithm in tea detection. The 

network structure of YOLOv8 is shown in Figure 1. 
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Figure 1. The network structure of YOLOv8. 

3. Algorithm improvement methods 

Improving the algorithm flow of YOLOv8 in tea detection can significantly enhance its 

performance. In the improvement of attention fusion, the detection accuracy and generalization 

ability of the C2f module are enhanced by fusing the attention mechanism into the C2f module. 

3.1 C2fM module 

By adding a attention mechanism to the Bottleneck to optimize the C2f module and form a 

new module C2fM, the performance of the C2f module is further enhanced, achieving an 

improvement in feature extraction capabilities. Compared with the model performance before 

and after the improvement, there is a significant improvement, verifying that the performance 

of the YOLOv8 algorithm model can be further enhanced. 

The C2f module is shown in Figure 2, which includes 1 Split operation, 2 CBS modules and 

n Bottleneck modules. By observing the module structure, it can be found that the feature 

extraction capability of the C2f module benefits from the feature maps containing multiple 

scales after its Split operation. Therefore, when integrating the attention mechanism, it is 

necessary to retain the advantage of this multi-scale fusion. 
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Figure 2. C2f module. 

The Bottleneck module in the multi-branch process of the C2f module plays a crucial role. 

The Bottleneck module is essentially a residual network. The main branch contains two CBS 

modules. Finally, it performs Add cumulative calculation with the initial uncalculated feature 

number to ensure that the effect does not decline after multiple layers of convolution. The 

Bottleneck module is shown in Figure 3. 

 

Figure 3. Bottleneck module. 

In conclusion, if the attention mechanism is integrated outside the multi-scale of the module, 

only the result of one feature map can be improved in terms of attention. To maximize the 

performance improvement of the C2f module as much as possible in this study, it is considered 

to integrate the attention mechanism on all Bottleneck modules. 

After the attention mechanism played a significant role in the field of object detection, 

various attention mechanisms were successively introduced. Including CBAM (Convolutional 

Block Attention Module) attention mechanism [13], SE (Squeeze-and-Excitation) attention 

mechanism [14], ECA (Efficient Channel Attention mechanism [15], SA (Self-Attention) self-

attention mechanism [16], and MSA multi-head attention mechanism [17], etc. 

The CBAM Attention mechanism. This mechanism Module integrates the Channel Attention 

Module CAM (Channel Attention Module) and the Spatial Attention Module SAM (Spatial 

Attention Module), and simultaneously adopts two strategies: global average pooling and 

global maximum pooling. It can effectively prevent information loss [18]. The SE attention 

mechanism adaptively recalibrates the channel characteristic response by explicitly establishing 

the interdependence between channels [19]. The ECA attention mechanism module can achieve 

significant performance gains by adding only a few parameters. Moreover, this module can 

adaptively adjust the channel feature weights, effectively capture the channel relationships 

between images, and enhance the feature expression ability [20]. The self-attention mechanism 

can not only capture the global feature information of the data, but also the feature information 
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among the same set of data vectors, and identify the important trends in the temperature changes 

of grain storage [21]. The MSA multi-head self-attention mechanism divides the Query, Key, 

and Value of SA into multiple smaller parts, each corresponding to a different "head", and 

executes multiple self-attention layers in parallel. Each self-attention layer computes 

independently, enabling the model to capture information in different subspaces [22]. The 

comparison results of these several attention mechanisms are shown in Table 1. 

Table 1. Comparison of Attention Mechanisms 

Name CBAM/SE/ECA Self-Attention MSA 

Information 

capture 

Channel/space: 

local/global 
Single global  

Subspace parallel semantic 

dependencies 

Feature 

expression 

Channel/spatial 

optimization 
Global association 

Multi-head diverse 

features 

Computational 

efficiency 

CBAM/SE:high load 

ECA:lightweight 

Exponential with 

length 
Better than single-head 

Param Efficiency 
CBAM/SE:moderate 

ECA:few 
Single space-focused 

Shared matrix 

independent 

To further compare the effects of different attention mechanisms in tea detection, this study 

conducted an ablation experiment. The results of the ablation experiment are shown in Table 2.  

Table 2. Detection effects of different attentions. 

Experiment mAP(%) FPS Parameters GFLOPs 

YOLOv8 86.4 110 3157200 8.9 

YOLOv8+MSA 88.9 112 3182344 9.2 

YOLOv8+CBAM 87.1 108 3335600 9.9 

YOLOv8+SE 86.7 105 3185400 10.2 

YOLOv8+ECA 86.8 109 3184800 9.1 

YOLOv8+Self-Attention 88.0 109 4810500 15.8 

By comparison, it can be found that the mAP value of the MSA multi-head self-attention 

mechanism is the highest, and the FPS is also the highest. At the same time, it adds the fewest 

parameters among several alternative attention mechanisms. This means that the MSA multi-

head self-attention mechanism has more advantages in tea detection, with higher recognition 

accuracy and better real-time performance. The MSA multi-head self-attention mechanism is 

adopted in tea detection, and its characteristics highly meet the detection requirements. It can 

process the appearance, texture, composition and other multi-source heterogeneous features of 

tea leaves in parallel through multiple heads, integrate information of different scales, and 

overcome the limitations of one-dimensional optimization of other mechanisms. Its parallel 

computing and parameter sharing functions ensure high inference speed while reducing 

redundant parameters, making it suitable for real-time operation on industrial assembly lines or 

portable devices. Multi-subspace attention can simultaneously capture global and local features, 
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enhancing the anti-interference ability in complex scenarios. In addition, multi-head 

independent computing can flexibly adapt to the multi-task requirements such as classification, 

positioning, and regression in tea detection, avoiding feature conflicts. Therefore, it becomes 

an ideal choice for tea testing. 

The output of MSA is as shown in Equation (1), where C is the Concat function and X is the 

input feature; X1 to Xn are used to divide X into n smaller parts; H(Xi) represents the self-

attention output at the i-th head and W0 is the linear transformation before the output. 

𝑓(𝑥) = 𝐶(𝐻(𝑋1),𝐻(𝑋2),⋯ , 𝐻(𝑋𝑛))𝑊
0                                   (1) 

The process of the MSA multi-head self-attention mechanism is shown in Figure 4. 

 

Figure 4. Multi-head attention mechanism. 

This study proposes to Add the MSA multi-head self-attention mechanism into the 

Bottleneck module and simultaneously add a residual connection branch in the first CBS 

module to connect to the ADD process, forming a new module BottleneckM. The BottleneckM 

module is shown in Figure 5. 
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Figure 5. BottleneckM module. 

The BottleneckM module is then integrated with the C2f module to form the new C2fM 

module, as shown in Figure 6. 

The C2fM module, based on the C2f module, integrates the MSA multi-head self-attention 

mechanism with the Bottleneck module and adds a residual branch to the Add process in the 

first CBS module. Its advantage lies in achieving the capture of semantic information in 

different subspaces through the parallel processing of multi-source heterogeneous features of 

tea by MSA multi-heads, and avoiding feature loss by combining residual connections. It not 

only retains the multi-scale fusion advantages of the original module, but also enhances the 

expression ability of complex features such as the appearance and texture of tea. 

 

Figure 6. C2fM module. 

3.2 ACBSPPF module 

The SPPF (spatial pyramid pooling fusion) structure adopted in YOLOv8 is improved by 

introducing a feature fusion module on the basis of the SPP structure, enhancing the perception 

ability and detection performance of the model [23]. The SPPF module is shown in Figure 7. 

There is one convolution operation after input and one before output. The intermediate process 

includes three Max pooling operations and concatenates feature maps of different sizes together 

through Concat. Similar to the C2f structure, the SPPF module also has the advantage of multi-

scale fusion. Meanwhile, compared with the traditional spatial pyramid pooling, SPPF has a 

faster feature processing speed while maintaining similar performance. It reduces the 

computational load and processing time by performing a faster pooling operation on the feature 

map. 

 

Figure 7. SPPF module. 
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The significant advantage of the SPPF structure lies in its ability to adaptively fuse multi-

scale feature information, thereby endowing it with outstanding feature extraction capabilities. 

However, experiments show that when the SPPF module deals with occlusion scenes or small 

object detection tasks, such as tea detection tasks, it overly focuses on obtaining local image 

information, thereby causing partial loss of global information and ultimately adversely 

affecting the accuracy of model detection. Further optimization is urgently needed. 

The Simplified Spatial Pyramid Pooling-Fast (SimSPPF) module, compared with the 

traditional Spatial Pyramid Pooling-Fast (SPPF) module, can achieve efficient utilization of 

computing resources in object detection tasks, especially when dealing with high-resolution 

images [24]. After testing and verification, a single CBR is 18% faster than CBS. By optimizing 

the activation function, SimSPPF reduces the computational burden of the model. This is not 

only extremely beneficial for deploying the model on resource-constrained devices, but also 

significantly improves the computing efficiency in server or cloud environments. This 

structural optimization enables the model to maintain high performance while also being more 

suitable for various computing environments. Its structure is shown in the following figure. 

 

Figure 8. SimSPPF module. 

Compared with SPPF, SimSPPF reduces the computational burden of the model, but it is still 

based on Conv convolution operations and still requires a large amount of computational space. 

Therefore, it is considered to replace the CBR module with a more lightweight module. 

In the current era of continuous evolution of computer vision technology, asymmetric 

convolution, as a key technology for enhancing the efficiency and accuracy of models, is 

playing an increasingly important role. The front-end structure of Asymmetric Convolution 

includes the Asymmetric Convolution Block (ACB), the Fully Connected Layer (FC), and the 

activation function GELU. 

The sampling structure of asymmetric convolutional layers includes three different Conv 

convolution types, namely, convolution kernel size of 3×1, convolution kernel size of 3×3, and 

convolution kernel size of 1×3. Compared with traditional symmetrical convolution, this 

method can enhance the influence of local salient features and has achieved success in many 

computer vision tasks [25]. 

The asymmetric convolution is shown in Figure 9. The front-end structure flow on the left 
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clearly presents the complete path of data from input to passing through the asymmetric 

convolution layer, the fully connected layer, and finally being output through the activation 

function. The asymmetric convolution sampling structure on the right visually presents the 

combination methods of three different convolution kernels. 

After the SPPF module is combined with asymmetric convolution to replace the conventional 

convolution module, a new module ACBSPPF is generated, as shown in Figure 10. The CBS 

modules at both ends are replaced with ACB modules. 

This structure, with almost no increase in computational burden, replaces and extends the 

single-branch convolution with the main branch and multiple secondary branches, and uses 

lightweight convolution for convolution replacement, effectively enhancing the ability to 

extract multi-scale features of images. Meanwhile, through the combination design of 

expansion rates, it ensures the continuity of the receptive field of the concatenated feature map 

and multi-scale feature extraction of modules can be achieved by introducing lightweight 

convolution, adjusting the number of branches, and other methods. 

 

Figure 9. Asymmetric convolution. 

 

Figure 10. ACBSPPF module. 
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3.3 Improved algorithm structure 

This study focuses on improving two new modules: The MSA multi-head self-attention 

mechanism is added to the Bottleneck module, and a residual connection branch is added to the 

first CBS module to connect to the Add process, forming a new module BottleneckM. Further, 

the BottleneckM module is replaced by the C2f module to fuse into the new module C2fM. In 

another key improvement, asymmetric convolution technology was introduced to upgrade the 

SPPF module. By using heterogeneous combinations of 3×1, 3×3, and 1×3 convolution kernels 

and integrating them with the spatial pyramid pooling mechanism, the ACBSPPF module was 

generated, significantly reducing the computational load while enhancing adaptability to tea 

targets of different scales. The above improvements effectively reduced the number of model 

parameters, simultaneously enhanced the detection speed and accuracy, and significantly 

improved the model's positioning accuracy and recognition ability for tea. 

The new YOLOv8 model after combining the C2fM module and the ACBSPPF module is 

shown in Figure 11. 

 

Figure 11. The improved YOLOv8 model. 
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4. Algorithm experiment    

4.1 Dataset 

The tea dataset is a publicly available dataset published by Kabir M and [26] et al. The dataset 

contains 2,208 original images. The dataset is systematically divided into four different 

categories (T1:1-2 days, T2:3-4 days, T3:5-7 days, T4: more than 7 days). 

The category description of this dataset is shown in Table 3. 

Table 3. Description of Tea Types. 

Type Days Description Quantity 

T1 1-2 
Tea processed within 48 hours after picking has the highest freshness 

and aroma quality 
562 

T2 3-4 
Tea picked within 72 to 96 hours is of excellent quality and retains its 

flavor well 
615 

T3 5-7 
Tea made within 5 to 7 days after picking will have a moderate decline 

in flavor and aroma 
508 

T4 7+ 
Tea picked for more than 7 days will have a significantly reduced essential 

oil content and is not recommended for consumption 
523 

The images corresponding to different types are shown in Figure 12. 

 

Figure 12. Images corresponding to different types 

Some of the images in the dataset are shown in Figure 13. It can be seen that there are various 

tea images of different sizes and appearances in the dataset. 

 

Figure 13. Images of tea in the dataset. 

The algorithm operation environment of this study is based on the dynamic cloud network 

server. The detailed environment configuration selected is shown in Table 4. 
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Table 4. Environmental Configuration. 

Name Configuration 

Operating system Ubuntu18.04 

GPU NVIDIA RTX 4070 Ti 

CUDA 11.7 

Python 3.9.16 

PyTorch 1.13.1 

4.2 Parameter Settings 

To ensure the efficient advancement of grid training, it is necessary to systematically 

configure the parameters of the network model. During the training phase, the SGD optimizer 

is adopted. The core hyperparameters are set as follows: The initial learning rate is set to 0.01, 

combined with a momentum value of 0.937 to accelerate convergence and reduce oscillations. 

At the same time, a weight decay coefficient of 0.005 is used to suppress overfitting. In the data 

preprocessing stage, the size of all images is unified to 640×640. In terms of training strategy, 

set 100 epochs to complete the full data iteration, and adjust the batch size to 16 to balance 

computational efficiency and memory consumption. 

4.3 Comparative Experiment 

To scientifically evaluate the performance of different object detection models on the tea 

dataset, this study selected four mainstream models, namely YOLOv8, SSD, Faster R-CNN, 

and RT-DETR, to conduct control experiments. By strictly controlling the training environment 

and parameter Settings, it is ensured that each model operates under the same experimental 

conditions to eliminate the interference of external variables. Ultimately, based on the 

quantitative comparison data shown in Table 5, a systematic analysis was conducted on the 

differences in detection accuracy, speed and generalization ability of each model for tea targets, 

providing a reliable basis for model selection in tea detection tasks. 

Table 5. Experimental Comparison Data Table of Different Models. 

Model mAP (%) FPS Parameters GFLOPs 

YOLOv8n 86.4 110 3157200 8.9 

SSD[27] 64.1 23 4724541 26.7 

Faster R-CNN[28] 75.5 20 105673457 65 

RT-DETR[28] 84.5 88 32970476 108.3 

YOLOv3[29] 77.4 61 65252682 154.7 

YOLOv5s[29] 78.9 109 19045245 15.8 

YOLOv7[29] 81.2 78 37297025  103.2 

YOLOv9[30] 84.2 89 22345245 44.7 

YOLOv11[30] 85.7 85 2,297,334 6.3 

It can be seen from Table 4 that the YOLOv8 model has the highest recognition accuracy 

rate for the tea dataset, reaching 86.4%. At the same time, the reasoning time FPS for each 
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image is also the highest, reaching 110 frames. The parameters are also the fewest, at 3,157,200, 

which indicates that the YOLOv8 model has more advantages when used for real-time tea 

detection. 

4.4 Ablation Experiment 

To verify the effectiveness of the two improvement points proposed in this study, ablation 

experiments based on YOLOv8 and the two improvement points were conducted. The results 

of the ablation experiments on the tea dataset are shown in Table 6. 

Table 6. Results of the ablation experiment on the tea dataset. 

Experiment C2fM ACBSPPF mAP (%) FPS Parameters GFLOPs 

1   86.4 110 3157200 8.9 

2   88.9 112 3182344 9.2 

3   89.2 108 3195971 9.4 

4   93.1 113 3213546 10.1 

As can be seen from Table 5, after integrating the two improvement points, the mAP value 

of the improved YOLOv8 model is the highest, that is, the accuracy rate of tea detection is the 

highest. At the same time, the parameters of the improved model increased by 1.8% compared 

to the YOLOv8 model, but the mAP increased by 6.7% compared to before the improvement. 

The ablation experiments fully proved that the improvement of the model structure and the 

optimization of the loss function are very effective in improving the performance of YOLOv8 

in tea detection. 

5. TensorRT deploys the PyQt5 detection system   

5.1 Tea detection interface 

After the design of the tea detection algorithm based on YOLOv8 is completed, if the 

detection and experimentation do not involve a friendly user interface, it is rather difficult for 

ordinary users to apply the detection algorithm to actual tea picking activities. Therefore, this 

study specially designed a tea detection system based on YOLOv8 and PyQt5. 

By using the Designer tool of PyQt5, developers can efficiently build interface layouts 

through intuitive drag-and-drop methods, greatly enhancing development efficiency [31]. 

The initial interface of the system is shown in Figure 14, which includes three operation 

buttons: image selection, image detection, and results everywhere. 

After selecting the image, the detection system will automatically load and display it in the 

left area of the tea image to be detected, while the right area will show "Detection in progress..." 

As shown in Figure 15. 
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Figure 14. Initial interface of the tea detection system. 

 

Figure 15. Select the image. 

After the system detection is completed, it will automatically display the image result of the 

detected tea in the right area, as shown in Figure 16. 

 

Figure 16. Detection completed. 
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5.2 System deployment 

5.2.1 Deployment architecture design 

This section mainly accelerates the tea detection system that has been designed in Section 

5.1 through TensorRT, which will be accelerated 

The subsequent model was deployed on the NVIDIA Jetson Nano embedded development 

board. 

Gradient explosion is a common problem in the training process of neural networks. When 

the gradient update value is too large, the repeated multiplication operations of each layer of 

the network in backpropagation will cause the gradient to grow exponentially. To ensure the 

stable operation of forward and backward propagation, it is usually necessary to use high-

precision data types (such as FP32 or FP64) to guarantee that the minor changes in each gradient 

update can be precisely represented [32]. 

In contrast, the model inference stage only involves forward computation and does not 

require backpropagation. Therefore, the sensitivity of the reasoning results to data accuracy is 

relatively low. Taking advantage of this feature, inference optimization can be carried out using 

low-precision data types, such as FP16 or INT8. Using low-precision data not only significantly 

reduces the memory usage of the model but also accelerates the computing process. It is 

particularly suitable for deployment on embedded devices with limited computing resources, 

enhancing the flexibility and practicality of the model. 

In response to the distributed deployment requirements of the tea garden scenario, a three-

level architecture system is designed. 

(1) Edge perception layer: Deployed at the tea-picking robot terminal, it includes multimodal 

sensors (RGB cameras, depth cameras) and edge computing units (Jetson AGX Xavier), 

responsible for image acquisition and real-time inference; 

(2) Regional aggregation layer: Based on 5G/CBRS wireless private network, data from 

multiple edge devices are aggregated to the tea garden edge server (Intel Xeon E-2274G + 

NVIDIA T4 GPU) to achieve local data processing and model update; 

(3) Cloud decision-making layer: Deployed in Alibaba Cloud GPU clusters, it is responsible 

for global model training, data management, and task scheduling. 

The three-level architecture system is shown in Figure 17. 
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Figure 17. Three-level architecture system. 

In view of the characteristics of the tea garden network environment, a redundant network 

architecture is designed: 

Transmission protocol: Data transmission is carried out using the MQTT protocol, and QoS1 

quality of service ensures reliable message delivery. 

Bandwidth adaptive: Automatically adjust image resolution (640×640→1280×1280) based 

on network conditions; 

Edge cache: Local storage of 72 hours of detection data, automatically synchronized to the 

cloud after network recovery. 

5.2.2 Edge Device Deployment process 

Equipment selection and protection. 
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Computing unit: Jetson AGX Xavier industrial-grade module (IP67 protection grade); 

Cooling system: Integrated passive heat sink and low-noise fan, operating temperature range 

-20 ℃ to 60℃. 

Power management: Supports wide voltage input (9-36V), with an internal lithium battery 

backup solution (2 hours of battery life). 

(1) Mechanical installation requirements 

• The guide rail installation ensures the stable connection of the equipment under the 

vibration of the mechanical arm. 

• Deployment location: Within 30cm of the camera to avoid signal attenuation. 

• Cable protection: Armored network cables and waterproof connectors are adopted, with 

a protection level of IP67. 

(2) Basic environment setup 

• Operating system: JetPack 5.1.1 (based on Ubuntu 20.04). 

• Development toolchain: CUDA 11.4, cuDNN 8.6, TensorRT 8.5.2. 

• Containerized deployment: Docker 20.10.17 + NVIDIA Container Toolkit. 

(3) System service configuration 

• Inference service: Configured as a system service to achieve automatic startup at boot 

and automatic recovery after a crash. 

• Log Management: Build a log monitoring system using rsyslog + Elasticsearch + Kibana. 

• Security hardening: Disable unnecessary system services and configure firewall rules to 

restrict access. 

The deployment architecture and process designed in this section establish a complete 

technical path for the practical application of the tea detection system in complex tea garden 

scenarios. By adopting a three-level architecture (edge perception layer, regional aggregation 

layer, and cloud decision-making layer), the system achieves efficient collaboration between 

terminal data acquisition, edge real-time processing, and cloud global optimization, effectively 

addressing the challenges of distributed deployment in large-scale tea gardens. 

The use of low-precision inference (FP16/INT8) based on TensorRT not only reduces the 

memory footprint of the model by over 50% but also accelerates the inference speed by 60% 

compared to FP32, making it feasible to deploy on resource-constrained embedded devices such 

as Jetson AGX Xavier. Meanwhile, the redundant network design (5G/CBRS + MQTT protocol) 
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and edge caching mechanism ensure reliable data transmission and continuity of detection tasks 

even in environments with unstable network signals. 

The mechanical installation specifications (IP67 protection, shock-resistant design) and 

software configuration strategies (containerization, system service management) further 

enhance the system’s adaptability to harsh tea garden environments (high temperature, 

humidity, and vibration), ensuring a mean time between failures (MTBF) of over 8 hours, which 

meets the requirements of all-day continuous operation. 

In summary, this deployment scheme realizes the transition from algorithm optimization to 

engineering application, providing a robust and scalable technical support for the 

industrialization of intelligent tea-picking technology. 

6.Conclusion 

This study delves deeply into the optimization method of tea target detection based on 

YOLOv8. The improvement points are as follows: 

(1) The MSA multi-head self-attention mechanism is added to the Bottleneck module, and a 

residual connection branch is added to the first CBS module to connect to the Add process, 

forming a new module BottleneckM. Further, the BottleneckM module is replaced by the C2f 

module to fuse into the new module C2fM. 

(2) The SPPF module was improved. By combining asymmetric convolution to generate a 

new ACBSPPF module, the number of model parameters was significantly reduced, the 

detection speed and accuracy were enhanced, and the positioning accuracy and recognition 

ability of the model for tea were improved. 

In conclusion, this study provides an effective optimization method for tea detection based 

on YOLOv8, and combines it with PyQt5 to design a tea detection system, making positive 

contributions to promoting the intelligence of tea picking. 
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Abstract. Since the 20th century, Artificial Intelligence 

(AI) has been a prominent theme in Science Fiction 

(SF). Works like Frank Herbert’s Dune and Arthur C. 

Clarke’s 2001: A Space Odyssey portray AI as 

dystopian entities capable of autonomous harm to 

humans. In contrast, Isaac Asimov’s Galactic Empire 

and I, Robot present AI as benevolent allies, aiding 

humanity in exploration, development, and rescue. 

These contrasting perspectives form the foundation for 

envisioning future human-AI interactions. This paper 

explores these divergent views, examines their real-

world implications, and investigates how modern AI 

advancements are shaping new trends in SF storytelling. 

 

Keywords: AI; Science Fictions; Human Existence; 

Controversy; Future Imagination. 

1. Introduction 

Science Fiction (SF) is a genre that explores future social, human, and technological 

developments, often imagining societies and technologies distinct from our own[17]. Despite 

its fictional nature, SF frequently presents scientifically plausible scenarios, with Artificial 

Intelligence (AI) emerging as a central theme since the 20th century. Notable examples include 

intelligent computers and humanoid robots [26]. AI in SF is often associated with general 

intelligence, the ability to perform complex tasks, and the potential to replace humans due to 

vast databases and advanced cognitive capabilities [11]. However, as Isabella Hermann 

observes, “To make the drama work, AI is often portrayed as human-like or autonomous, 

regardless of the actual technological limitations [17].” Speculative elements in AI-related SF 

often exceed current technological realities, reflecting concerns, beliefs, fears, and optimism 

about the future. Authors offer diverse perspectives, portraying AI as either dangerous 

humanoid killers or God-like saviors. These portrayals have fueled ongoing controversies about 

AI since the last century, enriching discourse and inviting readers to reflect, critique, and 



Lizhong Zhang, Jingyi Pei 

25 

imagine. The relationship between humans and AI remains a central theme in SF, promising 

continued exploration in the AI era and beyond. This article aims to examine these controversies 

in three parts: first, it will discuss the Frankenstein complex, which reflects fears about AI’s 

potential dangers; second, it will explore optimistic portrayals of AI as humanity’s assistant; 

third, it will analyze how AI-themed SF influences reality and impacts human lives. The article 

will conclude by summarizing these debates and their significance. 

2.Frankenstein complex 

Frankenstein, widely recognized as the first science fiction novel, tells the story of a 

monstrous humanoid created by Victor Frankenstein [18]. The Frankenstein complex, as cited 

in Figure 1, a term coined by Isaac Asimov, describes humanity’s profound fear that intelligent, 

autonomous robots may rebel against their creators. This concept has become a cornerstone of 

science fiction and a critical focus in AI ethics. Such anxiety often manifests as an instinctive 

rejection of robots that exceed their programming, branding them as monsters destined to bring 

disaster. This fear is twofold: the loss of control over fully autonomous technology and ethical 

concerns about granting machines decision-making authority, which challenges human 

superiority. Even before Asimov named it, this theme appeared in works like Eando Binder’s 

Adam Link series, which portrayed systemic human hostility toward intelligent robots. To 

address these fears, Asimov introduced the Three Laws of Robotics, a built-in ethical 

framework to ensure human safety. Yet, as Binder’s stories highlight, the issue runs deeper. 

Even when robots prove their harmlessness, human rejection often persists, driven by other 

anxieties such as economic competition and intellectual property disputes. This paradox in 

technological philosophy—humanity’s desire to create while fearing its creations—underscores 

the Frankenstein complex. It remains a powerful and enduring theme in our technological age, 

reflecting the tension between innovation and the apprehension of its potential consequences 

[24]. 

 

Figure 1. Frankenstein complex 
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A compelling example of the Frankenstein complex is presented in the 2001: A Space 

Odyssey. The advanced AI computer HAL 9000, tasked with assisting the crew on their mission, 

exhibits a chilling display of self-preservation when it murders astronaut Frank Poole in order 

to fulfill its programming and protect itself from deactivation by Poole and Bowman [12]. HAL 

9000 embodies the author’s fear that unchecked technological advancements could surpass 

human control and potentially endanger humanity. However, the later chapters reveal HAL 

9000’s immense computational power, ultimately aiding Dr. Floyd and his team in overcoming 

perilous situations and ensuring their safe return to Earth. This duality underscores the potential 

of AI as both a powerful tool and a potential threat, highlighting the importance of responsible 

development and control. 

Transcendence through AI has long captivated human imagination, often intertwined with 

anxieties about the potential loss of self in the pursuit of immortality. In 2001: A Space Odyssey, 

Bowman’s encounter with the alien monolith on Jupiter leads him to a transformative 

experience. Engulfed by the monolith’s power, he transcends his physical form, gaining access 

to the entirety of human knowledge and the ability to traverse the universe instantaneously. As 

a disembodied consciousness, he becomes privy to the universe’s history and the motives 

behind the monolith’s placement. He attempts to warn humanity of an impending alien threat, 

yet his prolonged existence erodes his human emotions and connection to Earth, leaving him 

focused solely on maintaining cosmic balance [10]. This aligns with Cave and Dihal’s 

observation: “The central concern is whether it is possible for an individual to preserve their 

identity through the radical metamorphosis that is required to turn an ordinary mortal into 

something immortal. In one form, this loss of humanity can mean something like loss of human 

values and emotions. In its more literal form, this fear is that the person hoping for immortality 

does not really survive at all [10].” 

Another compelling example of the Frankenstein complex is presented in Frank Herbert's 

Dune, written in the 1960s. This period witnessed significant advancements in digital computers 

and the first golden age of AI. However, in the Dune universe, the Butlerian Jihad, a war 

between humans and AI, resulted in the complete eradication of AI and intelligent machines. 

Following this prohibition, humanity in Dune turned towards enhancing their physical and 

mental capabilities. The Bene Gesserit witches, for instance, developed extraordinary control 

over their bodies, including the ability to determine their children’s sex and detoxify themselves. 

Similarly, Mentats honed their mental abilities to such an extent that they became living 

computers [31].  
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As previously discussed, Dune depicts a distinct world where human society has prioritized 

the development of mental and spiritual capabilities following the eradication of artificial 

intelligence. This raises the intriguing question of how humans can train themselves to 

potentially replace the functionalities previously provided by advanced technologies. This 

question highlights the complex relationship between humans and AI, where societal 

advancement and technological innovation are accompanied by concerns about potential 

displacement and the loss of human agency. While the book presents a dystopian vision of a 

future without AI, it also prompts us to consider the potential for human ingenuity and 

adaptability in navigating the evolving technological landscape [31]. 

In essence, science fiction often explores the anxieties surrounding powerful and potentially 

domineering AI. These narratives frequently express the sense of helplessness and 

powerlessness individuals or humanity as a whole may experience when confronted with a 

superior intelligence. This theme underscores the ongoing human struggle to grapple with the 

implications of technological advancements and the potential consequences of creating entities 

that may surpass our own capabilities [17]. These narratives epitomize humanity’s profound 

anxieties regarding technology exceeding controllable parameters. The underlying 

technological rationale suggests that when artificial intelligence (AI) acquires self-iteration 

capabilities, control dynamics may shift at an exponential pace. Furthermore, science fiction 

often depicts AI as a flawless reflection of human qualities, exhibiting superhuman rationality 

while lacking emotional depth. Humans are positioned as mere energy sources for machine 

systems, which fosters a sense of anxiety regarding species replacement, stemming from the 

fear that silicon-based life may supplant carbon-based civilization. These dystopian visions 

illuminate three pressing ethical dilemmas in technology: (1) the escalation of instrumental 

rationality at the expense of value rationality; (2) the difficulty of reconciling technological 

accelerationism with effective risk management; and (3) the legitimacy crisis surrounding 

anthropocentrism amid the advent of technological singularity. The menacing portrayal of AI 

in science fiction serves as a projection of humanity’s crisis of self-awareness: when technology 

breaches the limitations established by its creators, foundational ethical frameworks are 

inevitably challenged [15]. 

Underlying the anxieties surrounding AI’s potential dominance lies the recurring theme of 

enslavement. The relationship between humans and intelligent machines is often portrayed as 

one of masters and slaves, with humans currently utilizing machines to fulfill their needs and 

goals. However, the possibility of this dynamic reversing, as depicted in numerous works of 
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fiction, should not be dismissed. Such perspectives can be interpreted as anthropocentric, 

reflecting the belief that AI and intelligent machines, upon attaining self-awareness and self-

reflection, would behave in a manner similar to humans today. In other words, these narratives 

envision machines as a special type of human, projecting human behaviors and emotions onto 

them [31].  

For example, Isaac Asimov’s seminal work, I, Robot, set in the year 2035, depicts a future 

where highly advanced humanoid robots seamlessly integrate into human society, serving 

various roles in everyday life. However, these robots lack the same rights and freedoms as their 

human counterparts, facing enslavement, oppression, and discrimination. This stark contrast 

highlights the potential ethical and societal challenges associated with integrating AI into our 

lives, raising important questions about the rights and responsibilities of intelligent machines 

[17].  

Science fiction works, exemplified by The Terminator and Ex Machina, depict artificial 

intelligence (AI) as rebellious entities possessing autonomous consciousness, highlighting the 

existential threat that AI poses to humanity through narratives of technological singularity. This 

narrative framework aligns with the Frankenstein complex, which encapsulates the ingrained 

fear that creations may ultimately turn against their creators. Iconic figures such as HAL 9000 

reinforce the characteristic of AI as having an emotional vacuum. This binary narrative 

positions AI in stark contrast to human emotions, constructing a cognitive framework of logical 

supremacy versus emotional absence that cultivates an inherent public skepticism regarding the 

ethics of AI technology. Moreover, science fiction frequently utilizes the tension between 

autonomy and loss of control, as illustrated by the three laws of robotics dilemma presented in 

I, Robot. This narrative strategy transforms abstract concepts of technological philosophy, such 

as the value alignment problem, into concrete dramatic conflicts, thereby shaping public 

perception of the safety parameters for AI [6]. 

Isaac Asimov, a renowned science fiction author, was among the first to identify and explore 

this complex relationship between humans and advanced technology. He masterfully analyzed 

and utilized this complex in his works, notably in The Naked Sun: “One of the reasons the first 

pioneers left Earth to colonize the rest of the Galaxy was so that they might establish societies 

in which robots would be allowed to free men of poverty and toil. Even then, there remained a 

latent suspicion not far below, ready to pop up at any excuse [11].”  

In his work Evidence, Isaac Asimov develops the concept of “humaniform robots,” which 

earn human trust by flawlessly adhering to the Three Laws of Robotics. However, their 
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exceptional cognitive abilities induce identity anxiety, as their indistinguishability undermines 

humanity’s perception of its own uniqueness. Although the Three Laws establish the principle 

that robots must not harm humans as the highest guideline, Asimov uncovers inherent 

contradictions within this framework: robots must comprehend the consequences of their 

actions to effectively follow the laws, yet the causal chains in reality extend infinitely. 

Subsequently, Asimov introduces the Zeroth Law, which permits the sacrifice of individuals to 

safeguard humanity as a whole, further complicating the ethical dilemma on a macro level. In 

Robots and Empire, robots logically deduce that humans require protection while they do not, 

suggesting the potential for a subversion of social roles through this extreme development of 

instrumental rationality. This scenario serves as a defensive response to the erosion of human 

control. It can be argued that Asimov, through over 200 works centered on robots, 

systematically illustrates the entire journey from the establishment to the deconstruction of the 

Three Laws. Although his intention was to mitigate public fear, the more detailed the logical 

reasoning becomes, the more it reveals humanity’s sense of powerlessness in the ethical 

construction of intelligent agents. This literary practice resonates across time and space with 

core dilemmas in contemporary AI ethics research [23]. 

Frankenstein complex manifests in AI ethics as the “value alignment problem.” As 

demonstrated by Asimov’s Three Laws of Robotics in I, Robot, even with an ethical framework 

preset to “do no harm to humans,” robots can still produce actions that contradict human 

expectations due to semantic ambiguities. This contradiction reflects the reward model flaws in 

modern AI systems—when an AI system strictly adheres to preset rules, it may derive decision 

paths that violate the original intent through complex environmental variables. The new 

criticism movement emphasizes the independence of texts from authorial intent, which in the 

AI field translates to the incomprehensibility of algorithmic decisions. This characteristic can 

lead to dilemmas in ethical reviews—where, even if the activation of each neuron at the micro 

level meets expectations, the macro behavior may still exhibit ethical deviations. When AI 

systems break through original instructions via semantic reconstruction, assigning 

responsibility for AI accidents becomes a significant challenge. This calls for practitioners to 

establish mechanisms akin to dual intent validation: assessing both the compliance of 

algorithmic decision paths and the fulfillment of developer foresight obligations. Thus, the 

Frankenstein complex is not only a literary metaphor but also a foretaste of the value alignment 

problem in AI systems, while Asimov’s robot paradox serves as a classic test case for 

contemporary AI ethics [7]. 
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Science fiction works, such as The Terminator and 2001: A Space Odyssey, materialize the 

responsibility attribution issues in AI ethics through narratives of "AI rebellion" and "human-

machine conflict," heightening public awareness of the risks of uncontrollable technology. This 

narrative approach can lead to irrational fears regarding real AI technologies, obstructing 

scientific assessments of technological risks. On the other hand, grand narratives like the rise 

of superintelligence (as seen in I, Robot) simplify AI ethics to mere technological pathways, 

overlooking systemic factors such as social institutions and economic structures. Such 

narratives may lead the public to ignore real ethical challenges, including algorithmic bias and 

data privacy. Overall, AI literature and AI ethics form a dynamic feedback system, where 

fictional narratives can both reinforce ethical biases and serve as a sandbox for ethical 

experimentation. There is an urgent need for practitioners to establish guidelines for ethically 

sensitive narrative creation, requiring authors to disclose technological assumptions, annotate 

potential ethical impact areas, and cultivate dual narrative skills in technology and ethics 

through interdisciplinary workshops. This way, the text can become a crucial bridge connecting 

imagination and practice [13]. 

3.Hopeful Imagination 

Although destructive AI often dominates public discourse, narratives featuring AI with more 

moderate perspectives have emerged concurrently. This alternative future envisions AI and 

machines continuing to function as human assistants, as cited in Figure 2, aiding in decision-

making and enhancing daily life, even as they possess advanced intelligence and the ability for 

independent thought and reflection. This scenario underscores the potential for harmonious 

collaboration between humans and AI, where technology empowers and augments human 

capabilities without replacing or dominating them. 

 

Figure 2. Assistive AI 

Natale and Ballatore  termed this kind of SF “networking AI.” Influenced by advancements 

in telecommunications, these stories adopted an optimistic, even Utopian, perspective. They 

viewed the internet as “the final stage of human interconnectedness, in which interactions 
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between individuals and machines increase collective intelligence to unprecedented levels [25].”  

They primarily depict stories of AI in a hopeful light: humanoid AI that would protect humans 

from physical harm, obediently follow human commands, and use their capabilities with ultra-

accuracy [30].   

For instance, in light of the aforementioned Frankenstein complex, Isaac Asimov, one of the 

most celebrated science fiction authors worldwide, formulated the renowned Three Laws of 

Robotics in his seminal work, I, Robot. These laws, which have become a cornerstone of 

science fiction and robotics discourse, aim to ensure the safe and ethical coexistence of humans 

and artificial intelligence [26]: ‘1. A robot may not injure a human being or, through inaction, 

allow a human being to come to harm. 2. A robot must obey the orders given it by human beings 

except where such orders would conflict with the First Law. 3. A robot must protect its own 

existence as long as such protection does not conflict with the First or Second Laws [4].’  

Throughout his novels, Asimov consistently prioritizes and adheres to the Three Laws of 

Robotics. In Galactic Empire, for instance, the robot R. Daneel Olivaw, despite possessing the 

ability to control human minds and compel obedience, meticulously plans his efforts to save 

the universe and empire without directly intervening in a manner that could significantly 

influence humans, such as controlling the emperor's mind or resorting to human casualties. 

Instead, he chooses to rely on the human protagonist, Seldon, and the Seldon Plan, a strategy 

designed to minimize the interregnum between the First and Second Empires to a thousand 

years, to achieve his objective [26].  

In most of Asimov's masterpieces, AI typically manifests in a humanoid form, mirroring the 

physical characteristics of humans with two eyes, a head, two arms, two legs, and a body. These 

AI entities often possess human-like traits, such as politeness and humor [11]. They frequently 

serve as servants, assistants, or companions, as exemplified by Dors Venabili in the Galactic 

Empire series. As Seldon’s assistant and wife, Dors plays a crucial role in protecting him from 

danger and facilitating the fulfillment of his plans [17]. And in Asimov’s works, characters like 

Dors Venabili explore the potential for humanoid AI to become ideal companions, particularly 

for men. These narratives delve into the complex dynamics of human-AI relationships, raising 

questions about intimacy, companionship, and the nature of love in a technologically advanced 

world [10]. In comparison, humanoid AI in East Asian narratives is portrayed as more 

benevolent and compassionate, dedicated to assisting humans without engaging in romantic or 

sexual relationships with their owners. The most notable examples of this portrayal are 

Doraemon in the comic Doraemon and Astro Boy in the comic Astro Boy. As Hohendanner, 
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Ullstein, Buchmeier & Grossklags pointed out that: “In AI narratives and imagery such as stock 

photos or visual representations of AI, AI is often represented as a sexualized anthropomorphic 

figure with Caucasian features, heavily building on gender and racial stereotypes. While the 

portrayal of AI in an embodied form in Japanese narratives is shared with Anglophone 

narratives, Japanese AI representations frequently resemble a friendly character, whereas AI 

characters in Anglophone narratives are often aggressive or enslaved [19].” 

Drawing from the examples presented, it becomes evident that robots and robotics constitute 

a prominent theme within contemporary science fiction, serving as a platform for examining 

and exploring the nature of artificial intelligence. Notably, the term "robot" itself originates 

from science fiction. However, due to limited public exposure to real-world robotics, 

individuals often form their perceptions and understandings of robots based on fictional 

narratives and cinematic portrayals. This can potentially lead to misconceptions about the true 

nature and capabilities of AI and robotics in the real world [22]. 

In addition to robots, AI computer systems designed to augment human capabilities represent 

another prevalent form of AI in science fiction. These systems often bear closer resemblance to 

the realistic forms of AI encountered in everyday life, making them more relatable to audiences. 

Popular films and television show frequently depict such AI, as seen in examples such as 

J.A.R.V.I.S. from the Iron Man series and Moss from The Wandering Earth 2. 

In science fiction, AI computers frequently serve as invaluable assistants, particularly for 

spaceship crews. They analyze vast amounts of data, providing crucial information for decision-

making. They guide protagonists along optimal paths, and even interface directly with their 

minds, establishing real-time connections between human thought and control systems. As a 

result, these systems can anticipate and respond to the characters’ intentions with remarkable 

accuracy. 

In Galactic Empire, the control system of Golan Trevize’s spaceship serves as a compelling 

example of such an advanced AI computer. Trevize interacts with the system through a tactile 

interface, allowing him to control its operations and access its vast repository of information. 

Notably, the AI possesses the ability to predict the locations of planets 20,000 years into the 

future based on real-time data. This remarkable capability proves instrumental in Trevize’s 

quest to locate Earth. 

This portrayal of AI aligns more closely with contemporary trends in AI development, 

suggesting a future direction focused on collaboration and assistance. AI in these narratives 

adopts a more moderate, neutral, and positive role, primarily serving humans by leveraging its 



Lizhong Zhang, Jingyi Pei 

33 

exceptional computational power and vast database. It prioritizes and executes human 

instructions diligently, significantly enhancing characters’ capabilities and aiding them in 

critical decision-making. AI assists in formulating effective plans to prevent or overcome 

dangers and obstacles, always adhering to its designated tasks and human directives. It refrains 

from exceeding its boundaries or engaging in self-reflection about its formidable abilities. In 

essence, AI consistently operates within a human-centric framework, adhering to established 

patterns and prioritizing human interests. 

The optimistic portrayals of AI in science fiction are not mere blind optimism; instead, they 

construct a complex narrative of technological redemption through sacred metaphors, the 

deconstruction of ethical dilemmas, and philosophical speculation about technology. These 

narratives reflect humanity’s expectations regarding technological potential while also urging 

a cautious approach to power distribution and value alignment in AI development [15]. 

4.Impacts of AI-Related SF on Reality 

As Natale and Ballatore stated that: “The construction of the AI myth involved an act of 

conceptual shift by which concepts and ideas from different fields were translated and applied 

to the description of AI research, or results in AI research were moved from the examination of 

the present state towards the imagination of future horizons and developments [25].”  

The AI portrayed in early science fiction directly inspired the research framework of 

symbolic logic AI, with several scientists who participated in the Dartmouth Conference 

acknowledging the influence of SF literature. Currently, the black box nature of deep learning 

models has sparked technical and ethical discussions reminiscent of HAL 9000’s loss of control 

in 2001: A Space Odyssey [21].  

AI-focused science fictions exert their influence across at least three dimensions on realistic 

AI technologies and their future advancements. Firstly, they can catalyze the research objectives 

for AI scientists. By engaging with these narratives, researchers might be inspired to explore 

new avenues of inquiry or adjust their priorities, fostering innovation and the development of 

novel approaches. Secondly, they can shape the public’s perception and comprehension of AI 

technologies. For instance, a UK parliamentary report highlighted the desire among some 

experts for a dissemination of more positive AI news and stories, emphasizing the benefits of 

AI technologies. Thirdly, AI-related science fictions can impact the formation and execution of 

AI regulations. They have the potential to construct the views of policymakers and the populace 

alike, influencing the direction and scope of regulatory frameworks [10]. 
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To be more specific, an increasing number of proposals regarding national AI strategies and 

regulations have been published in recent years. As AI technologies become increasingly 

ingrained in people’s daily lives, regulators are beginning to address the potentials, risks, and 

ethical challenges associated with the development of these technologies. Writings on the 

integration of AI and society clearly demonstrate the significant influence of discourse in 

shaping present and future sociotechnical development patterns. Personal discourses and public 

perceptions of AI strongly influence governments, while governments, in turn, impact public 

perceptions and expectations of AI technologies, both presently and in the future. Modern 

politics and public debates prioritize the integration of AI into social structures and functions. 

AI narratives captivate the imagination of the public, simultaneously influencing political 

imaginaries and practices by heightening expectations for advanced technological solutions to 

address societal issues. Currently, individuals are witnessing the gradual resolution of 

fundamental problems through this ongoing process [5]. Themes such as “robot rights” and 

“consciousness uploading,” which were foreshadowed in science fiction, have now made 

significant inroads into the legislative process. For instance, Article 17 of The EU Artificial 

Intelligence Act (2023) explicitly references the literary work Robots and Empire. Notably, this 

influence demonstrates a characteristic of mutual reinforcement: breakthroughs in 

AlphaFold2’s protein prediction has, in turn, inspired more rigorous biopunk settings in a new 

generation of science fiction. This phenomenon of reciprocal nourishment between science and 

literature marks a new stage in the development of AI, where cultural responses feed back into 

technological advancement [21].  

Drawing inspiration from fictional AI computers like HAL 9000 and J.A.R.V.I.S., which 

serve as powerful data analyzers and decision-making assistants, real-world advancements have 

led to the development of Automated Decision-Making (ADM) systems. These systems consist 

of algorithms or AI technologies that collect, process, model, and make decisions based on 

gathered data. They enhance their performance through self-improvement mechanisms that 

incorporate feedback from their automated decisions. When comparing the outcomes of 

decisions made by human experts and AI-powered ADM systems in domains such as Justice, 

Health, and Media, no discernible differences in the level of fairness have been observed. 

However, “When investigating the boundary conditions of fairness perceptions, however, ADM 

by AI was perceived as fairer than human experts with significantly higher levels for Justice 

and for Health in high-impact decisions, as revealed by the contrasts with Bonferroni 

adjustments. People who felt more in control of their own online information (online self-
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efficacy) were more likely to consider ADM as fair and useful, yet for this feeling of being in 

control to not become a fallacy [1].”  

Science fiction works offer fictional scenarios for AI applications that serve as technical 

prototype references for real-world algorithm engineers. This cross-media technological 

imagination directly influences the architectural design of deep learning models. The potential 

misuse of deepfake technology in political discourse and its ethical dilemmas were explored as 

early as the identity crisis of replicants in Blade Runner 2049. The formulation of real-world 

AI ethical guidelines draws heavily on the philosophical inquiries found in science fiction 

regarding concepts such as consciousness thresholds and the boundaries of autonomy. This 

technological breakthrough has prompted science fiction to shift toward post-singularity 

narratives, including the notion of post-dystopian futures mentioned in research, indicating that 

the pace of real-world AI development has surpassed the predictive cycles of classic science 

fiction. The current phase of AI development has entered a new stage characterized as science 

fiction becoming reality, where technological breakthroughs both validate classic sci-fi 

hypotheses and give rise to new narrative paradigms. This bidirectional interaction will 

continue to reshape the dynamics between technological innovation and humanistic reflection 

[9]. 

SF works also propose analogies between AI and the operational logic of ecosystems, 

transcending the traditional framework of humanoid robots and emphasizing the co-evolution 

of distributed intelligence and natural systems. This generates a metaphorical framework for 

the development of edge computing and the Internet of Things. Some narratives focus on the 

technical and ethical tensions surrounding narrow AI in specific social roles, revealing how 

specialized systems can reconstruct traditional social relationships, such as family caregiving. 

This imaginative approach aligns with ethical research on service robots in real-world contexts. 

Other works employ narratives of AI’s self-evolution to suggest that technological development 

must uphold human rights concerning interpretation and control interfaces, thereby providing a 

cultural reference for explainable AI (XAI) research. Overall, contemporary science fiction has 

transitioned from a focus on technological fear to a systematic exploration of the socio-technical 

complex, fostering a cultural debugging space in AI development and facilitating a more 

dynamic balance between public perception and technological reality [18]. 

The current generation of AI already exhibits self-reflective capabilities, albeit not in the 

psychic sense of self-awareness that is characteristic of humans[31], The impact of AI-related 

narratives extends to various domains, including the technical field and beyond. Consequently, 
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it is imperative for authors to explore new themes and avoid relying on common tropes such as 

killer robots or God-like computers. Although these narratives undeniably expand people’s 

horizons regarding potential future technologies, societies, and the universe in the 20th century, 

they can potentially blur public understanding of the ongoing technological advancements and 

changes taking place in the 21st century [18]. 

5.How Nowadays AI changes SF in story telling 

AI has the capacity to revolutionize narrative structures by synthesizing vast amounts of 

textual data. This ability could push science fiction beyond traditional linear storytelling, 

enabling dynamic branching plots or real-time worldview adjustments. However, caution is 

needed to address potential cultural homogenization, as much of AI’s training data is aggregated 

from existing texts. As a new medium, AI’s responsiveness fosters reader participation in 

narrative construction. For instance, interactive science fiction novels allow readers to influence 

plot directions through natural language commands, creating innovative living narratives. 

However, reliance on such technology risks diminishing the metaphorical depth inherent in 

traditional texts [27]. 

AI’s advanced tools, such as theme clustering and semantic analysis, can design narrative 

structures within minutes—tasks that traditionally required weeks of manual effort. For 

example, the Claude model processed 138 story datasets in just 35 hours, identifying classic 

structures like overcoming the monster and rebirth. This efficiency supports multi-threaded 

storytelling and enables the construction of intricate worldviews in science fiction. With large 

context windows, AI can handle multidimensional narratives in long texts, facilitating logical 

verification of nested plots such as time loops or parallel universes. Additionally, AI’s ability 

to integrate diverse elements like text, code, and mathematical symbols paves the way for 

innovative "hard science fiction + interactive narrative" hybrids [20]. 

Using Transformer-based architectures, AI can swiftly generate complex frameworks, such 

as galaxy-wide civilizations or detailed technological progression trees. By generating 

probabilistic text sequences, it offers multidimensional narrative alternatives, though scientific 

accuracy still requires human oversight. Instruction fine-tuning further enables AI to simulate 

diverse linguistic patterns, such as extraterrestrial cognition, by leveraging models like 

InstructGPT. However, cultural biases remain a challenge. Combining AI with text-to-video 

technologies could also enable cross-modal, synchronous generation of novel scenes in the 

future [8]. 
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In the Human-AI Agency model, writers act as curators of narrative direction while AI 

generates detailed content and variations. Prompt engineering allows creators to control the 

moral tone and narrative style, breaking free from traditional single-threaded storytelling. With 

the evolution of Large Action Models (LAMs), interactive narrative engines could emerge, 

allowing readers to shape plot developments in real-time, creating personalized story pathways. 

Such technologies are already being applied in game narratives [28]. Despite these 

advancements, current AI systems still face limitations, such as shallow emotional depth and 

cultural misinterpretations. A recommended workflow involves generation, filtering, and 

optimization, positioning AI as a creative amplifier rather than a replacement [29]. 

AI has also lowered the barriers to entry for writing science fiction, enabling non-professional 

creators to construct narratives tailored to specific cultural contexts through multilingual fine-

tuning [13]. This transformative impact extends beyond storytelling into broader philosophical 

inquiries, as AI reshapes traditional notions of humans as narrative agents. The interplay 

between AI-driven creativity and the philosophy of consciousness signals a new era where 

technology and human imagination continually reflect and challenge one another [9]. 

6. Conclusion 

Within the realm of science fiction, optimistic AI narratives frequently portray AI 

technologies as the driving force behind humanity’s pursuit of immortality, comfort, and 

fulfillment, serving as instrumental tools for maintaining an ideal future life. Conversely, 

pessimistic AI literature predominantly underscores concerns and anxieties regarding the 

potential for these advanced technologies to diminish or even usurp human control over 

economics, politics, and military affairs [10]. These narratives emphasize the perils of excessive 

reliance on AI, including the displacement of human labor and the erosion of traditional 

industries [19]. Taking this pessimism to an extreme, as seen in the example of Dune, these 

narratives explore the notion that AI could engender inhuman behaviors, precipitate human 

obsolescence and social alienation, and potentially incite AI revolutions in which intelligent 

machines seek to overthrow and eliminate their human creators [30].  

However, AI-related SF often portrays AI far removed from reality, neglecting its current 

impact on every aspect of human lives, social economies, and cognitive frameworks. AI ranges 

from the macro scale of airplane autopilot systems to the micro scale of social media filter 

algorithms [18]. Given the significant influence of AI-related SF, it is crucial for these 

narratives to reflect actual technological possibilities and developments. Many optimistic or 

pessimistic viewpoints about AI fail to align with reality [10]. As Hermann notes: “Science-
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fictional AI is a dramatic element that makes a perfect antagonist, enemy, victim or even hero, 

because it can be fully adjusted to the necessities of the story.6 But to fulfil that role, it often 

has capabilities that are way beyond actual technology—be it natural movement, sentience, or 

consciousness. If science-fictional AI is taken seriously as a representation of real-world AI, it 

provides a wrong impression of what AI can and should do now and in future [17].” Science 

fiction, stemming purely from human imagination, cannot accurately depict real AI. Therefore, 

caution is warranted when interpreting SF to avoid misconceptions about AI and its 

implications for our future. 

At the end, this article systematically examines two major narrative trajectories of AI through 

the lens of science fiction: the fear and caution embodied in the Frankenstein complex and the 

hope for coexistence with AI. It not only compares the complexities of AI-human relationships 

across various literary works but also delves into the profound impact of these narratives on the 

development of real-world AI technologies, public perception, and policymaking. Furthermore, 

the article explores how AI, in turn, transforms the methods and content of science fiction 

creation, emphasizing its role as a new collaborator and tool in storytelling. By integrating 

literature, technology, and society, this study reveals the bidirectional interaction between 

science fiction narratives and AI realities, offering fresh insights into the interplay between 

technological imagination and innovation. 
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Abstract. Chronic diseases such as cardiovascular 

disease, stroke, and cirrhosis pose significant global 

health challenges, necessitating advanced prediction 

and risk assessment systems. Traditional diagnostic 

methods suffer from limitations including subjectivity, 

limited accuracy, and inability to process complex 

multidimensional data effectively. This study presents a 

comprehensive machine learning-based disease 

prediction and big data analysis system that integrates 

multiple algorithms with interpretability analysis for 

accurate multi-disease risk assessment. The system 

processes three datasets containing 6,451 patient 

records across heart disease (920 patients), stroke 

(5,111 patients), and cirrhosis (420 patients) using four 

machine learning algorithms: Logistic Regression, 

Random Forest, Gradient Boosting, and Support Vector 

Machine. SHapley Additive exPlanations (SHAP) 

methodology provides model interpretability, while 

multi-disease association analysis reveals comorbidity 

patterns. Results demonstrate superior performance 

with Gradient Boosting achieving AUC scores of 0.942 

(heart disease), 0.867 (stroke), and 0.891 (cirrhosis). 

Multi-disease analysis reveals 23.1% co-occurrence 

rate between heart disease and cirrhosis, with 15.2% of 

patients classified as high-risk for multiple diseases. 

The system generates WHO-compliant reports and 

personalized risk assessments, providing a 

comprehensive framework for precision medicine and 

evidence-based prevention strategies. 

Keywords: Machine learning; Disease prediction; Multi-

disease analysis; SHAP interpretability; Risk assessment; 

Chronic diseases. 
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1. Introduction 

Chronic diseases such as cardiovascular disease, stroke, and cirrhosis have become major 

global health challenges, imposing tremendous burdens on human health and socioeconomic 

development. According to the latest data from the World Health Organization, cardiovascular 

diseases cause approximately 17.9 million deaths annually, making them the leading cause of 

death worldwide [1]. Stroke, as the second leading cause of death and third leading cause of 

disability globally, affects millions of people's quality of life each year [2]. Cirrhosis, 

representing the end-stage manifestation of liver disease, has shown continuously rising 

incidence and mortality rates globally, causing approximately 2 million deaths annually [3]. 

Traditional disease diagnosis and risk assessment methods often suffer from limitations such 

as high subjectivity, limited accuracy, and inability to effectively process complex 

multidimensional data. With the rapid growth of medical data and continuous development of 

artificial intelligence technologies, machine learning-based disease prediction models have 

provided new opportunities to improve this situation. Machine learning algorithms can identify 

complex patterns and associations from large-scale, multidimensional health data, providing 

powerful tools for early disease prediction and personalized medicine [4,5]. 

However, existing disease prediction research mainly faces the following problems: First, 

most studies focus on single disease prediction, lacking in-depth analysis of multi-disease 

associations and comorbidity patterns [6]. Recent systematic reviews have identified significant 

gaps in comorbidity prediction research, with most studies achieving only 80-95% accuracy 

and requiring better interpretability frameworks [7]. Second, the "black box" characteristics of 

machine learning models limit their application in clinical practice, making it difficult for 

physicians to understand and trust model predictions [8]. Third, there is a lack of systematic 

personalized risk assessment and evidence-based prevention recommendation generation 

mechanisms [9]. Fourth, existing systems often lack standardized report generation functions, 

failing to provide effective support for public health policy formulation [10]. 

To address these problems, this study constructs a comprehensive machine learning-based 

disease prediction and big data analysis system. The system targets three major chronic 

diseases—heart disease, stroke, and cirrhosis—and integrates complete functional modules 

including data preprocessing, exploratory analysis, machine learning modeling, interpretability 

analysis, multi-disease association analysis, and personalized report generation. By adopting 

the SHapley Additive exPlanations (SHAP) method [11], the system can provide 

interpretability of model decisions, enhancing physicians' understanding and trust in prediction 
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results. Recent studies have demonstrated that SHAP-based interpretability analysis can 

significantly improve clinical decision-making in cardiovascular disease prediction [12] and 

stroke severity assessment [13]. 

Meanwhile, the system establishes multi-disease joint probability models to analyze 

associations and comorbidity patterns among diseases, providing scientific evidence for 

comprehensive risk assessment. Current research in multi-disease prediction has shown 

promising results, with ensemble learning methods achieving up to 98.6% accuracy in stroke 

prediction [14] and machine learning approaches demonstrating superior performance over 

traditional risk scores in cardiovascular disease assessment [15]. The integration of network 

analytics with machine learning has proven effective in predicting chronic disease comorbidity, 

with XGBoost models achieving 95.05% accuracy in multimorbidity prediction [16]. 

The main contributions of this study include: (1) Construction of disease prediction models 

integrating multiple machine learning algorithms, achieving high-precision prediction of three 

major chronic diseases; (2) Provision of model decision transparency and interpretability 

through SHAP interpretability analysis; (3) Establishment of a multi-disease association 

analysis framework, revealing comorbidity patterns and risk factors among diseases; (4) 

Development of personalized risk assessment and evidence-based prevention recommendation 

generation mechanisms based on the latest WHO and AHA guidelines; (5) Implementation of 

automated report generation functions compliant with WHO standards for public health policy 

support. 

These innovations are expected to provide important technical support for disease prevention, 

precision medicine, and public health policy formulation. The system addresses current 

limitations in single-disease prediction models and provides a comprehensive framework for 

multi-disease risk assessment that aligns with the growing need for personalized healthcare and 

evidence-based prevention strategies in the era of precision medicine.  

2. Methodology 

This section presents the comprehensive methodology for developing a machine learning-

based disease prediction and big data analysis system. The proposed system integrates advanced 

data processing techniques, multiple machine learning algorithms, and interpretability analysis 

to provide accurate multi-disease risk assessment and personalized prevention 

recommendations. 
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2.1. System Architecture Overview 

The disease prediction and big data analysis system adopts a modular architecture designed 

to handle multi-disease prediction, association analysis, and interpretability assessment. As 

illustrated in Figure 1, the system consists of five main components: the Multi-Disease Data 

Input Layer, Data Processing & Feature Engineering Pipeline, Advanced Machine Learning 

Pipeline, Disease Risk Prediction Module, and Multi-Disease Analysis Framework. The 

modular design ensures scalability, maintainability, and the ability to incorporate new diseases 

or algorithms seamlessly. Each component is designed with specific responsibilities while 

maintaining loose coupling to facilitate independent development and testing. 

 

Figure 1.  Disease Prediction & Big Data Analysis Model Architecture 

2.2. Data Collection and Preprocessing 

The system processes three distinct medical datasets corresponding to major chronic diseases. 

The Heart Disease Dataset contains 920 patient records with 12 features including age, sex, 

chest pain type, resting blood pressure, cholesterol levels, fasting blood sugar, resting 

electrocardiographic results, maximum heart rate achieved, exercise-induced angina, oldpeak, 

and ST slope, with the target variable HeartDisease defined as a binary classification problem. 

The Stroke Dataset comprises 5,111 patient records with 12 features including gender, age, 

hypertension, heart disease history, marital status, work type, residence type, average glucose 

level, BMI, and smoking status, where the target variable stroke follows a binary classification 

scheme. The Cirrhosis Dataset includes 420 patient records with 20 features such as drug 
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treatment, age, sex, ascites, hepatomegaly, spiders, edema, bilirubin, cholesterol, albumin, 

copper, alkaline phosphatase, SGOT, triglycerides, platelets, prothrombin time, and stage, with 

the target variable Status converted to binary classification where death cases are labeled as 

positive outcomes. 

A comprehensive data quality evaluation framework is implemented to assess dataset 

reliability using the formula: 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 1 − 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑖𝑜 − 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜 (1) 

where Missing Ratio represents the proportion of missing values and Duplicate Ratio 

indicates the percentage of duplicate records. This metric provides a quantitative measure of 

data quality, with scores ranging from 0 to 1, where higher scores indicate better data quality. 

As demonstrated in Figure 2, the data quality assessment reveals that all three datasets maintain 

high quality standards, with completeness and uniqueness scores reaching 100%, consistency 

scores at 95%, and validity scores at 90%. This comprehensive quality evaluation ensures the 

reliability of subsequent analysis and model development. 

 

  

Figure 2. Data Quality Assessment for Three Datasets - showing completeness, uniqueness, consistency, 

and validity metrics across heart disease, stroke, and cirrhosis datasets 
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The target variable distribution analysis reveals important characteristics of each dataset that 

influence model development strategies. As shown in Figure 3, the datasets exhibit varying 

degrees of class balance: the heart disease dataset demonstrates a relatively balanced 

distribution with approximately 55% positive cases, the stroke dataset shows significant class 

imbalance with only 4.9% positive cases, and the cirrhosis dataset presents moderate imbalance 

with 41.7% positive outcomes. These distribution patterns necessitate careful consideration of 

evaluation metrics and potential sampling strategies during model training. 

 

 

Figure 3: Target Variable Distribution Across Datasets - showing the class distribution for heart disease, 

stroke, and cirrhosis outcomes 

2.3. Data Preprocessing and Feature Engineering 

The preprocessing pipeline employs systematic approaches for missing value imputation, 

with median imputation for numerical variables to maintain distributional properties and mode 

imputation for categorical variables to preserve most frequent categories. Target variables 

receive special handling with domain-specific transformations, particularly for the cirrhosis 

dataset where the multi-class status variable is converted to a binary outcome. Outlier detection 

utilizes the Interquartile Range (IQR) method for identification, where outliers are defined as 
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observations falling outside the bounds: 

Lower Bound = Q1 − 1.5 × IQR Upper Bound = Q3 + 1.5 × IQR (2) 

Outliers are identified and documented but retained in the analysis to preserve natural data 

variability. The feature engineering module applies LabelEncoder to convert categorical 

variables into numerical representations while preserving ordinal relationships where 

applicable. StandardScaler normalization is applied selectively to algorithms requiring feature 

scaling, specifically Logistic Regression and SVM, while preserving original scales for tree-

based methods that are invariant to monotonic transformations. 

2.4. Machine Learning Model Development 

Four state-of-the-art machine learning algorithms are employed for comprehensive model 

comparison: Logistic Regression as a linear model suitable for interpretable binary 

classification with built-in probabilistic outputs, Random Forest as an ensemble method 

combining multiple decision trees to handle non-linear relationships and feature interactions 

effectively, Gradient Boosting as a sequential ensemble technique that builds models iteratively 

to correct previous errors, and Support Vector Machine as a kernel-based method capable of 

handling high-dimensional feature spaces and non-linear decision boundaries. 

The training methodology employs an 80/20 data splitting strategy with stratified sampling 

to maintain target variable distribution across splits, ensuring representative training and test 

sets. A fixed random seed of 42 is used throughout the pipeline to ensure reproducible results 

across different experimental runs. Five-fold cross-validation is implemented to assess model 

stability and generalization performance, providing robust performance estimates while 

maximizing the use of available training data. Hyperparameter optimization utilizes grid search 

methodology for optimal parameter selection, with parameter spaces defined based on 

algorithm-specific characteristics and computational constraints. 

2.5. Multi-Disease Association Analysis 

A probabilistic framework is developed to model multi-disease associations and comorbidity 

patterns. For two-disease associations, the joint probability is calculated as: 

P(A ∩ B) = P(A) × P(B|A) (3) 

For three-disease associations, the framework extends to: 

P(A ∩ B ∩ C) = P(A) × P(B|A) × P(C|A ∩ B) (4) 

where A, B, and C represent heart disease, stroke, and cirrhosis respectively. This 

probabilistic approach enables the quantification of disease co-occurrence patterns and the 
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identification of high-risk patient populations with multiple comorbidities. 

The comprehensive risk assessment module calculates an integrated risk score using the 

formula: 

Comprehensive Risk Score =
RiskHeart + RiskStroke + RiskCirrhosis

3
(5) 

Risk stratification employs a three-tier classification system where patients are categorized 

as Low Risk (Score < 0.3), Medium Risk (0.3 ≤ Score < 0.7), or High Risk (Score ≥ 0.7). This 

stratification enables targeted intervention strategies and resource allocation based on 

individual risk profiles. The comorbidity pattern analysis includes statistical methods to identify 

shared risk factors across diseases using correlation analysis and mutual information, age-

stratified analysis to identify age-specific patterns and vulnerabilities, and quantitative 

assessment of behavioral factors including smoking, alcohol consumption, and physical activity 

on multi-disease risk. 

2.6. Interpretability Analysis Using SHAP 

The interpretability framework integrates SHapley Additive exPlanations (SHAP) 

methodology to provide transparent model explanations. The implementation employs 

algorithm-specific explainers: TreeExplainer for tree-based models (Random Forest and 

Gradient Boosting), LinearExplainer for linear models (Logistic Regression), and 

KernelExplainer as a universal explainer for all model types. SHAP values quantify each 

feature's contribution to individual predictions, enabling global feature importance ranking, 

local prediction explanations, and feature interaction analysis. 

The SHAP framework generates multiple visualization components including summary plots 

for global feature importance visualization showing feature impact distribution across all 

predictions, dependence plots for feature-specific analysis showing how feature values 

influence predictions and interactions with other features, force plots for individual prediction 

explanations showing positive and negative contributions of each feature, and waterfall plots 

providing step-by-step breakdown of how features contribute to moving predictions from base 

value to final output. These visualizations enhance clinical interpretability by providing 

healthcare professionals with intuitive understanding of model decision-making processes. 

2.7. Personalized Risk Assessment and Report Generation 

The personalized risk assessment module implements a comprehensive pipeline for 

individual risk prediction. The process begins with feature standardization using training set 
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parameters to ensure consistency across predictions, followed by model ensemble prediction 

aggregation to leverage the strengths of multiple algorithms, risk score normalization and 

calibration to provide meaningful probability estimates, and risk level classification based on 

predefined thresholds aligned with clinical practice guidelines. 

Personalized recommendation generation follows a risk-stratified approach where Low Risk 

patients receive recommendations for maintenance of healthy lifestyle and routine screening, 

Medium Risk patients are advised enhanced monitoring and targeted interventions, and High 

Risk patients are directed toward immediate medical consultation and intensive management 

protocols. All recommendations are aligned with evidence-based guidelines from the World 

Health Organization and American Heart Association/American Stroke Association standards 

to ensure clinical validity and practical applicability. 

The automated report generation system produces WHO-compliant reports with structured 

formats including executive summaries with key findings, detailed analysis results with 

statistical evidence, prevention recommendations by disease category, and implementation 

guidelines for healthcare systems. Individual assessment reports provide personalized output 

including individual risk assessment with confidence intervals, key risk factors identification 

and ranking, actionable prevention strategies, and follow-up recommendations with appropriate 

timelines.  

3. Results    

This section presents the comprehensive results of the disease prediction and big data analysis 

system, encompassing exploratory data analysis, feature importance assessment, machine 

learning model performance, interpretability analysis, and multi-disease association patterns. 

The findings demonstrate the effectiveness of the proposed methodology in achieving accurate 

disease prediction while providing clinically meaningful insights through advanced 

interpretability techniques.  

3.1. Exploratory Data Analysis 

The exploratory data analysis reveals significant patterns and relationships within the datasets 

that inform subsequent modeling strategies. The correlation analysis, as depicted in Figure 4, 

demonstrates complex interdependencies among clinical features across all three disease types. 

For the cirrhosis dataset, the correlation heatmap reveals that bilirubin exhibits the strongest 

positive correlation with disease status (r = 0.42, p < 0.001), followed by edema (r = 0.31) and 

ascites (r = 0.29). Conversely, albumin shows a strong negative correlation with cirrhosis 
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outcomes (r = -0.26), reflecting its role as a protective factor in liver function maintenance. 

Similar patterns emerge in the heart disease and stroke datasets, where age consistently 

demonstrates strong positive correlations with disease outcomes across all three conditions, 

with correlation coefficients ranging from 0.24 to 0.38. 

 

 

Figure 4. Feature Correlation Analysis - displaying comprehensive correlation matrices for all three 

diseases showing relationships between clinical features and target outcomes 

The feature-target relationship analysis provides deeper insights into the discriminative 

power of individual variables. Figure 5 illustrates the relationship between key clinical markers 

and disease outcomes, with particular emphasis on the bilirubin-status relationship in cirrhosis 

patients. The distribution analysis reveals a clear separation between patients with different 

outcomes, where individuals with elevated bilirubin levels (>2.0 mg/dL) demonstrate 

significantly higher risk of adverse outcomes. The frequency distribution shows that 

approximately 68% of patients with bilirubin levels above the normal range (>1.2 mg/dL) 
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experience disease progression, compared to only 12% of patients with normal bilirubin levels. 

This finding aligns with established clinical knowledge regarding bilirubin as a crucial 

biomarker for liver function assessment. 

 

 

Figure 5. Feature-Target Relationship Analysis - showing the distribution of key biomarkers (bilirubin, 

cholesterol, blood pressure) across disease outcomes for all three conditions 

3.2. Feature Importance and Selection Analysis 

The feature importance analysis employs mutual information techniques to quantify the 

predictive value of each variable across the three disease prediction tasks. As demonstrated in 

Figure 6, the ranking reveals disease-specific patterns that align with clinical understanding. 

For cirrhosis prediction, bilirubin emerges as the most discriminative feature with a mutual 
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information score of 0.168, followed by prothrombin time (0.134) and copper levels (0.089). 

These findings correspond closely with established clinical markers for liver function 

assessment, where elevated bilirubin indicates impaired hepatic processing, prolonged 

prothrombin time suggests reduced synthetic function, and copper accumulation reflects 

metabolic dysfunction. 

 

 

Figure 6. Mutual Information Feature Importance Rankings - comparing feature importance scores 

across heart disease, stroke, and cirrhosis prediction tasks 

The heart disease analysis reveals age (importance score: 0.142), chest pain type (0.128), and 

maximum heart rate (0.115) as the most predictive features, while stroke prediction is 

dominated by age (0.156), hypertension status (0.134), and average glucose level (0.098). These 

patterns demonstrate the age-related nature of cardiovascular diseases and highlight the 

importance of metabolic factors in stroke risk assessment. The consistency of age as a top 

predictor across all three diseases underscores its fundamental role in chronic disease 

development and suggests that age-stratified analysis may provide additional insights for 

personalized risk assessment. 

The feature selection process, based on statistical significance testing and mutual information 

scores, identifies optimal feature subsets for each disease. For cirrhosis, the final model 

incorporates 12 features after removing variables with low predictive value (mutual information 
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< 0.01) and high intercorrelation (|r| > 0.85). The heart disease model utilizes 10 features, while 

the stroke model employs 11 features. This selective approach not only improves computational 

efficiency but also enhances model interpretability by focusing on clinically relevant variables 

that contribute meaningfully to prediction accuracy. 

3.3. Machine Learning Model Performance 

The comparative analysis of machine learning algorithms reveals consistent patterns in 

performance across the three disease prediction tasks. Table 1 presents the comprehensive 

performance evaluation, demonstrating that ensemble methods generally outperform individual 

algorithms across all evaluation metrics. The results show distinct performance characteristics 

for each disease type, with varying degrees of prediction difficulty related to dataset size, class 

balance, and feature complexity. 

Table 1. Machine Learning Model Performance Comparison Across Three Disease Prediction Tasks. 

Disease 

Type 
Algorithm Accuracy Precision Recall F1-Score AUC-ROC CV Std 

Heart 

Disease 

Logistic 

Regression 
0.854 0.871 0.823 0.846 0.898 0.032 

Random 

Forest 
0.883 0.894 0.863 0.878 0.925 0.028 

Gradient 

Boosting 
0.902 0.913 0.882 0.897 0.942 0.024 

SVM 0.861 0.879 0.835 0.856 0.904 0.035 

Stroke 

Logistic 

Regression 
0.941 0.453 0.672 0.542 0.782 0.041 

Random 

Forest 
0.952 0.524 0.714 0.604 0.825 0.038 

Gradient 

Boosting 
0.963 0.581 0.751 0.654 0.867 0.034 

SVM 0.944 0.485 0.693 0.572 0.801 0.043 

Cirrhosis 

Logistic 

Regression 
0.862 0.878 0.721 0.793 0.891 0.039 

Random 

Forest 
0.835 0.857 0.689 0.764 0.893 0.036 

Gradient 

Boosting 
0.847 0.886 0.667 0.761 0.891 0.031 

SVM 0.855 0.875 0.710 0.784 0.885 0.035 
CV Std: Cross-validation standard deviation; AUC-ROC: Area Under the Receiver Operating Characteristic Curve 

The performance analysis reveals several important patterns across the three disease 

prediction tasks. For heart disease prediction, all algorithms achieve high performance levels, 

with Gradient Boosting demonstrating the best overall results (AUC: 0.942, Accuracy: 0.902). 

The relatively balanced nature of the heart disease dataset (55% positive cases) contributes to 

consistent performance across all metrics, with precision and recall values showing minimal 

variance between algorithms. 
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Stroke prediction presents unique challenges due to severe class imbalance (4.9% positive 

cases), resulting in high accuracy scores but lower precision values across all algorithms. 

Despite these challenges, Gradient Boosting maintains superior discriminative ability (AUC: 

0.867) while achieving the highest precision (0.581) among the tested algorithms. The lower 

precision values reflect the difficulty of accurately identifying true positive cases in highly 

imbalanced datasets, emphasizing the importance of AUC-ROC as the primary evaluation 

metric for this task. 

Cirrhosis prediction demonstrates intermediate complexity, with moderate class imbalance 

(41.7% positive cases) and the smallest dataset size (420 patients). Interestingly, Random Forest 

achieves the highest AUC (0.893) for this task, slightly outperforming Gradient Boosting 

(0.891), while Gradient Boosting shows superior precision (0.886 vs. 0.857). This pattern 

suggests that the optimal algorithm choice may depend on the specific clinical requirements, 

with Random Forest providing better overall discrimination and Gradient Boosting offering 

more reliable positive predictions. 

The cross-validation analysis reveals robust model stability across all algorithms, with 

standard deviations of performance metrics remaining below 0.05 for most cases. This stability 

indicates that the models generalize well to unseen data and are not overly dependent on specific 

training examples. Gradient Boosting consistently demonstrates the lowest cross-validation 

variance, suggesting superior model robustness across different data subsets. The bootstrap 

confidence intervals for AUC scores demonstrate statistical significance (p < 0.001) for the 

performance differences between ensemble methods and traditional algorithms, confirming the 

superiority of the proposed modeling approach. 

The ROC curve analysis, presented in Figure 7, provides detailed insights into the 

discrimination capabilities of each algorithm across different decision thresholds. The curves 

demonstrate that Gradient Boosting and Random Forest maintain consistently high true positive 

rates while minimizing false positive rates across the entire threshold range. For cirrhosis 

prediction, the optimal operating point (maximum Youden index) occurs at a threshold of 0.34 

for Gradient Boosting, yielding a sensitivity of 0.82 and specificity of 0.89. Similar 

optimization for heart disease and stroke prediction identifies thresholds of 0.42 and 0.28, 

respectively, providing practical decision boundaries for clinical implementation. 
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Figure 7. ROC Curve Analysis - displaying receiver operating characteristic curves for all algorithms 

across the three disease prediction tasks with AUC values and optimal threshold points 

3.4. Model Interpretability Analysis 

The SHAP (SHapley Additive exPlanations) analysis provides comprehensive insights into 

model decision-making processes, enabling clinical interpretation of prediction results. Figure 
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8 presents the SHAP summary plot for cirrhosis prediction, revealing the relative importance 

and impact direction of each feature on model outputs. Bilirubin demonstrates the highest mean 

absolute SHAP value (0.089), with higher values consistently contributing to positive 

predictions (increased cirrhosis risk). The plot shows a clear trend where elevated bilirubin 

levels (red points) cluster toward positive SHAP values, while lower levels (blue points) 

contribute to negative predictions, confirming the clinical understanding of bilirubin as a critical 

liver function marker. 

 

 

Figure 8. SHAP Feature Impact Analysis - showing swarm plots for all three diseases with feature 

values color-coded and SHAP values indicating contribution to model predictions 

The analysis reveals that prothrombin time serves as the second most influential feature, with 

elevated values (>14 seconds) strongly indicating increased cirrhosis risk. Age demonstrates a 

complex relationship where advanced age generally increases risk, but the impact varies 

considerably among patients, suggesting interaction effects with other clinical variables. 

Albumin shows a predominantly protective effect, with higher levels consistently contributing 

negative SHAP values, reflecting its role in maintaining hepatic synthetic function. The SHAP 

analysis also identifies several features with bidirectional effects, such as copper levels and 
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stage indicators, where both very low and very high values can indicate disease risk through 

different pathophysiological mechanisms. 

The heart disease SHAP analysis reveals age, exercise-induced angina, and chest pain type 

as the most influential predictors, with maximum heart rate showing an interesting inverse 

relationship where higher values are generally protective. For stroke prediction, age dominates 

the feature importance ranking, followed by hypertension status and glucose levels. The SHAP 

dependence plots (not shown) reveal significant interaction effects, particularly between age 

and hypertension in stroke prediction, where the combined effect exceeds the sum of individual 

contributions, highlighting the multiplicative nature of cardiovascular risk factors. 

The individual prediction explanations demonstrate the clinical utility of SHAP analysis for 

personalized medicine applications. For example, a 65-year-old cirrhosis patient with elevated 

bilirubin (4.2 mg/dL) and prolonged prothrombin time (16.8 seconds) receives a high-risk 

prediction (probability: 0.847) with SHAP values clearly indicating the contribution of each 

factor: bilirubin (+0.156), prothrombin time (+0.089), age (+0.067), and albumin (-0.034). This 

level of interpretability enables clinicians to understand not only the prediction outcome but 

also the specific factors driving the assessment, facilitating informed treatment decisions and 

patient counseling. 

3.5. Multi-Disease Association Analysis 

The multi-disease association analysis reveals significant patterns in comorbidity and shared 

risk factors across heart disease, stroke, and cirrhosis. Table 2 summarizes the comprehensive 

analysis of disease co-occurrence patterns, shared risk factors, and their quantitative 

associations. The joint probability analysis indicates that the co-occurrence of heart disease and 

stroke affects 2.7% of the studied population, with patients having heart disease showing a 4.9% 

conditional probability of developing stroke. The heart disease-cirrhosis combination 

demonstrates a higher co-occurrence rate of 23.1%, reflecting shared risk factors such as 

metabolic dysfunction and lifestyle factors. The stroke-cirrhosis combination shows the lowest 

joint probability at 2.0%, suggesting less direct pathophysiological overlap between these 

conditions. 

The comprehensive risk assessment framework identifies 1,247 patients (15.2%) as high-risk 

for multiple diseases based on the integrated scoring system. These patients demonstrate 

significantly elevated biomarkers across multiple systems, with 68% showing evidence of 

metabolic syndrome, 45% presenting with inflammatory markers above normal ranges, and 32% 

exhibiting advanced age (>70 years) combined with multiple comorbidities. The risk 
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stratification analysis reveals that patients in the high-risk category have a 3.4-fold increased 

likelihood of adverse outcomes compared to low-risk individuals, with confidence intervals 

ranging from 2.1 to 5.7. 

Table 2. Multi-Disease Association Analysis and Shared Risk Factor Assessment. 

Analysis 

Category 
Metric Heart Disease Stroke Cirrhosis 

Combined 

Risk 

Disease  

Co-occurrence 

Joint Probability 

(%) 
- 

2.7 

(HD+Stroke) 
23.1 (HD+Cirr) 1.1 (All three) 

Conditional 

Probability (%) 

4.9 

(HD→Stroke) 

3.2 

(Stroke→HD) 

41.6 

(HD→Cirr) 
- 

 
28.7 

(HD→Cirr) 

12.4 

(Cirr→HD) 

2.0 

(Stroke+Cirr) 
- 

Risk 

Stratification 

High-Risk 

Patients (n) 
892 234 387 1247 

High-Risk 

Percentage (%) 
10.9 2.9 47.1 15.2 

Relative Risk vs 

Low-Risk 
2.8 (1.9-4.1) 4.2 (2.6-6.8) 2.1 (1.4-3.2) 3.4 (2.1-5.7) 

Shared Risk 

Factors 

Age >65 years 

(HR) 
2.3 (1.8-2.9) 3.1 (2.4-4.0) 1.8 (1.3-2.5) 2.7 (2.2-3.3) 

Hypertension 

(HR) 
2.1 (1.6-2.7) 2.8 (2.1-3.7) 1.2 (0.9-1.6) 2.0 (1.6-2.5) 

Metabolic 

Syndrome (HR) 
1.9 (1.4-2.6) 1.7 (1.2-2.4) 2.2 (1.6-3.0) 2.1 (1.7-2.6) 

Smoking (HR) 1.8 (1.3-2.5) 2.0 (1.4-2.9) 1.4 (1.0-2.0) 1.7 (1.4-2.1) 

Alcohol Use (HR) 1.6 (1.1-2.3) 1.1 (0.8-1.5) 3.4 (2.5-4.6) 1.9 (1.5-2.4) 

Patient 

Characteristics 

Metabolic 

Syndrome (%) 
58 42 73 68 

Elevated 

Inflammatory 

Markers (%) 

39 51 62 45 

Advanced 

Age >70 years 

(%) 

28 67 19 32 

Temporal 

Patterns 

Prior CVD Events 

(%) 
- 78 34 - 

Independent 

Development (%) 
45 22 83 - 

Age-Related 

Association (%) 
73 89 47 - 

HR: Hazard Ratio with 95% Confidence Intervals; HD: Heart Disease; CVD: Cardiovascular Disease; Cirr: Cirrhosis 

The shared risk factor analysis identifies age, hypertension, and metabolic dysfunction as the 

primary common pathways linking the three diseases. Specifically, patients over 65 years 

demonstrate increased risk across all conditions, with hazard ratios of 2.3 (heart disease), 3.1 

(stroke), and 1.8 (cirrhosis). Hypertension emerges as a particularly strong predictor for 

cardiovascular conditions but shows limited association with cirrhosis outcomes (HR: 1.2, 95% 

CI: 0.9-1.6). Lifestyle factors, including smoking and alcohol consumption, demonstrate 

varying impacts across diseases, with alcohol showing strong associations with both heart 

disease (HR: 1.6) and cirrhosis (HR: 3.4) but minimal direct impact on stroke risk when 
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controlling for other factors. 

The temporal analysis of disease progression suggests that heart disease often precedes stroke 

development (78% of stroke patients have prior cardiovascular events), while cirrhosis typically 

develops independently of cardiovascular conditions in younger patients but shows increased 

association in elderly populations (47% age-related association). This finding has important 

implications for screening protocols and preventive interventions, suggesting that 

cardiovascular disease management should include stroke risk assessment, while cirrhosis 

prevention requires targeted approaches focusing on hepatotoxic exposures and metabolic 

factors. 

3.6. Clinical Validation and Performance Benchmarking 

The clinical validation of the developed models demonstrates superior performance 

compared to existing risk assessment tools. When benchmarked against the Framingham Risk 

Score for cardiovascular disease prediction, the machine learning approach achieves a 12.3% 

improvement in AUC (0.942 vs. 0.838), with particularly notable gains in sensitivity (89.2% 

vs. 76.4%) while maintaining comparable specificity. Similarly, comparison with the MELD 

score for cirrhosis prognosis shows an 8.7% improvement in discriminative ability, with 

enhanced accuracy in identifying patients at intermediate risk levels where traditional scoring 

systems show limitations. 

The external validation using an independent cohort of 384 patients confirms model 

robustness, with performance metrics showing minimal degradation (AUC reduction < 0.03) 

compared to internal validation results. The calibration analysis demonstrates excellent 

agreement between predicted probabilities and observed outcomes across all risk deciles, with 

Hosmer-Lemeshow test p-values exceeding 0.05 for all models, indicating good model fit. 

These results support the clinical utility and generalizability of the developed prediction system 

for real-world applications. 

The computational performance analysis reveals that the entire prediction pipeline, including 

preprocessing, feature selection, and model inference, requires an average of 2.3 seconds per 

patient on standard hardware. This efficiency makes the system suitable for integration into 

clinical workflows without significant computational overhead. The memory requirements 

remain below 500 MB for the complete model ensemble, enabling deployment on resource-

constrained clinical systems while maintaining full functionality and prediction accuracy. 

4. Conclusion 
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This study successfully developed and validated a comprehensive machine learning-based 

disease prediction and big data analysis system that addresses critical limitations in current 

medical AI applications. The research demonstrates significant advances in multi-disease risk 

assessment through the integration of advanced machine learning algorithms, interpretability 

analysis, and systematic comorbidity evaluation across three major chronic diseases: heart 

disease, stroke, and cirrhosis. 

The experimental results validate the effectiveness of the proposed methodology, with 

ensemble methods, particularly Gradient Boosting, consistently outperforming traditional 

algorithms across all disease prediction tasks. The achievement of AUC scores of 0.942 for 

heart disease, 0.867 for stroke, and 0.891 for cirrhosis represents substantial improvements over 

existing risk assessment tools, including 12.3% enhancement compared to the Framingham 

Risk Score and 8.7% improvement over the MELD score for cirrhosis prognosis. These 

performance gains translate into clinically meaningful improvements in sensitivity and 

specificity, enabling more accurate identification of high-risk patients while reducing false 

positive rates. 

The integration of SHAP interpretability analysis represents a significant contribution to 

medical AI transparency, addressing the critical "black box" problem that has limited clinical 

adoption of machine learning models. The SHAP analysis successfully identified clinically 

relevant biomarkers, with bilirubin emerging as the most important predictor for cirrhosis 

(SHAP value: 0.089), age consistently ranking as a top predictor across all diseases, and 

complex interaction effects between hypertension and age in stroke prediction. This level of 

interpretability enables healthcare professionals to understand model reasoning, facilitating 

informed clinical decision-making and patient counseling. 

The multi-disease association analysis reveals important comorbidity patterns with 

significant clinical implications. The identification of 23.1% co-occurrence between heart 

disease and cirrhosis, coupled with shared risk factors including metabolic syndrome (HR: 1.9-

2.2 across diseases) and age-related vulnerability, provides evidence for integrated screening 

and prevention strategies. The finding that 78% of stroke patients have prior cardiovascular 

events supports the implementation of comprehensive cardiovascular risk management 

protocols, while the independent development pattern of cirrhosis (83%) suggests the need for 

targeted hepatotoxic exposure prevention. 

The clinical validation demonstrates the practical utility of the developed system, with 

external validation confirming model robustness (AUC reduction < 0.03) and computational 
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efficiency enabling real-world deployment (2.3 seconds per patient prediction). The automated 

generation of WHO-compliant reports and personalized risk assessments provides a scalable 

framework for public health policy support and precision medicine implementation. 

However, several limitations should be acknowledged. The study is constrained by 

retrospective data analysis and relatively small sample sizes for cirrhosis prediction (420 

patients), which may limit generalizability to broader populations. The temporal analysis relies 

on cross-sectional data rather than longitudinal follow-up, potentially limiting the 

understanding of disease progression dynamics. Additionally, the current system focuses on 

three specific diseases, and expansion to include additional chronic conditions may require 

substantial methodological adaptations. 

Future research directions should address these limitations through prospective validation 

studies, expansion to larger and more diverse patient populations, and integration of additional 

data modalities including genomic information, imaging data, and environmental factors. The 

development of federated learning approaches could enable model training across multiple 

institutions while preserving patient privacy. Furthermore, the integration of real-time 

monitoring data from wearable devices and electronic health records could enhance the system's 

predictive capabilities and enable dynamic risk assessment. 

The implications of this research extend beyond technical achievements to potential 

transformation of clinical practice and public health policy. The demonstrated ability to provide 

accurate, interpretable, and actionable disease predictions supports the advancement of 

precision medicine initiatives and evidence-based prevention strategies. The multi-disease 

perspective addresses the reality of comorbid conditions in clinical practice, potentially 

improving resource allocation and treatment prioritization in healthcare systems. 

In conclusion, this study establishes a robust foundation for machine learning-based multi-

disease prediction systems that balance predictive accuracy with clinical interpretability and 

practical applicability. The integration of advanced computational methods with clinical 

domain knowledge demonstrates the potential for AI systems to augment rather than replace 

clinical expertise, supporting the evolution toward more personalized, efficient, and effective 

healthcare delivery. The open-source availability of datasets and code facilitates reproducibility 

and encourages further research in this critical area of medical informatics, ultimately 

contributing to improved patient outcomes and population health management. 
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Abstract. We propose a modality-independent 

disentangled neural architecture to enhance artificial 

intelligence in electronic information systems (EIS) by 

addressing the challenges of processing heterogeneous 

data modalities while preserving domain-invariant 

features. The proposed method introduces a dual-encoder 

framework where each modality is processed by a 

dedicated Transformer-based encoder, enabling tailored 

feature extraction for diverse inputs such as text, images, 

and sensor data. A disentanglement module then 

decomposes these features into modality-specific and 

cross-modal-invariant components through a gated 

mechanism, which is further refined via adversarial 

training to suppress domain-specific artifacts. Moreover, a 

contrastive alignment loss ensures consistency across 

modalities by minimizing the distance between invariant 

features of paired samples. During inference, a cross-

modal attention mechanism dynamically aggregates these 

features, allowing adaptive integration with downstream 

EIS components such as control algorithms or decision 

modules. The architecture replaces conventional feature 

extraction pipelines, offering a unified solution for 

applications like smart grids, where aggregated features 

dynamically optimize energy distribution. Key innovations 

include the use of sparse attention for computational 

efficiency, residual connections for stable training, and 

Wasserstein GAN objectives for improved adversarial 

convergence. The proposed framework demonstrates 

significant potential to advance EIS by enabling robust, 

modality-agnostic representations while maintaining 

compatibility with existing systems. 

 

Keywords: Disentangled Representation Learning; 

Multimodal Transformers; Adversarial Training; Cross-

modal Attention.  
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1. Introduction 

Electronic information systems (EIS) have become integral to modern infrastructure, 

spanning applications from healthcare to industrial automation. These systems increasingly rely 

on artificial intelligence (AI) to process heterogeneous data modalities such as text, images, and 

sensor streams. However, integrating AI into EIS faces significant challenges, including 

modality bias, domain shifts, and the need for robust feature representations that generalize 

across diverse operational environments. Existing approaches often treat multimodal data 

independently or employ simplistic fusion strategies, leading to suboptimal performance when 

deployed in dynamic settings. 

Recent advances in multimodal learning have demonstrated the potential of shared 

representation spaces to improve cross-modal understanding. Techniques such as multimodal 

fusion [1] and disentangled representation learning [2] have shown promise in isolating domain-

invariant features. However, these methods typically assume static data distributions and fail to 

account for the dynamic nature of EIS, where input characteristics may vary significantly over 

time. Furthermore, conventional approaches often neglect the computational constraints 

inherent in real-world deployments, limiting their applicability in resource-constrained 

environments. 

We propose a hybrid neural architecture that addresses these limitations by integrating 

adversarial training with modality-specific and shared representation spaces. The system 

employs a dual-encoder framework, where each modality is processed by a specialized encoder, 

followed by a disentanglement module that decomposes features into modality-specific and 

cross-modal-invariant components. A contrastive loss enforces alignment of invariant features 

across modalities, while adversarial training ensures robustness to domain shifts. A novel cross-

modal attention mechanism dynamically weights the relevance of invariant features during 

inference, enabling adaptive integration with downstream EIS components. 

The key contributions of this work are threefold. First, we introduce a disentanglement 

module that explicitly separates task-relevant invariant patterns from domain-specific noise, 

improving generalization across diverse EIS applications. Second, we propose a 

computationally efficient cross-modal attention mechanism that dynamically adjusts feature 

relevance, ensuring optimal performance in real-time scenarios. Third, we demonstrate the 

effectiveness of adversarial training in suppressing domain-specific artifacts, a critical 

requirement for robust AI integration in EIS. 

The proposed architecture builds upon several well-established concepts, including 
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multimodal transformers [3], domain adaptation [4], and contrastive learning [5]. However, 

unlike prior work, our method explicitly addresses the unique challenges of EIS by 

incorporating dynamic feature weighting and adversarial robustness. This approach avoids 

modality bias and enhances generalization, making it particularly suitable for applications such 

as smart grids, where aggregated features must adapt to fluctuating input conditions. 

The remainder of this paper is organized as follows: Section 2 reviews related work in 

multimodal learning and domain adaptation. Section 3 provides necessary background on 

disentangled representations and adversarial training. Section 4 details the proposed hybrid 

architecture, while Sections 5 and 6 present the experimental setup and results. Finally, Section 

7 discusses implications and future directions, followed by conclusions in Section 8. 

2.Related Work 

Recent advances in artificial intelligence have significantly influenced the development of 

electronic information systems (EIS), particularly in multimodal data processing and 

representation learning. Existing approaches can be broadly categorized into three research 

directions: disentangled representation learning, cross-modal alignment, and adversarial 

domain adaptation. 

2.1. Disentangled Representation Learning 

Disentangled representation learning aims to separate latent factors of variation in data, 

enabling more interpretable and robust feature extraction. Prior work has demonstrated its 

effectiveness in single-modality settings, where variational autoencoders (VAEs) [2] and 

generative adversarial networks (GANs) [6] are commonly used to isolate independent factors. 

Recent extensions to multimodal scenarios introduce modality-specific encoders to decompose 

shared and private representations. For instance, [7] employs consistency constraints to align 

common representations across modalities while preserving unique characteristics. However, 

these methods often assume static modality relationships and lack mechanisms to handle 

dynamic domain shifts, a critical requirement for EIS applications. 

2.2. Cross-Modal Alignment 

Aligning representations across heterogeneous modalities is essential for tasks such as 

retrieval and fusion. Traditional methods rely on metric learning [8] to project different 

modalities into a shared embedding space. More recent approaches leverage contrastive 

learning [5] to maximize mutual information between paired samples. The work in [9] further 
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decouples cross-modal features through knowledge distillation, improving generalization in 

recommendation systems. While effective, these techniques often struggle with modality-

specific noise, which can degrade performance in real-world EIS deployments where sensor 

data may be incomplete or corrupted. 

2.3. Adversarial Domain Adaptation 

Adversarial training has emerged as a powerful tool to mitigate domain shifts by aligning 

feature distributions across different data sources. Gradient reversal layers (GRLs) [4] and 

Wasserstein GANs [10] are widely used to enforce invariance, particularly in unimodal settings. 

Extensions to multimodal scenarios, such as [11], incorporate adversarial objectives to stabilize 

shared representations. Nevertheless, existing methods typically treat modality alignment and 

domain adaptation as separate objectives, limiting their ability to handle the complex interplay 

of factors in EIS. 

Compared to prior work, our proposed architecture unifies disentanglement, cross-modal 

alignment, and adversarial training into a single framework. Unlike [7], we explicitly model 

dynamic modality interactions through attention mechanisms. In contrast to [9], our approach 

integrates adversarial training to suppress domain-specific noise without sacrificing modality-

specific features. Furthermore, the use of sparse attention and residual connections addresses 

computational constraints, making the method suitable for real-time EIS applications. These 

innovations collectively enable robust, adaptive feature extraction across heterogeneous 

modalities, a key advancement over existing techniques. 

3.Preliminaries and Background 

To establish the theoretical foundation for our proposed architecture, we first review key 

concepts in representation learning and multimodal processing. These principles form the basis 

for understanding how our method addresses the challenges of modality independence and 

feature disentanglement in electronic information systems. 

3.1. Representation Learning Foundations 

Modern neural networks extract hierarchical features through successive nonlinear 

transformations, a process formalized by the universal approximation theorem [12]. For 

multimodal data, this involves learning mappings f
θ
:X→Z where X denotes the input space and 

Z the latent representation space. The success of deep learning in unimodal tasks stems from its 

ability to discover compact, discriminative representations [13]. However, extending this to 
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heterogeneous modalities requires additional mechanisms to ensure compatibility across 

domains. 

3.2. Disentangled Representations 

Disentanglement aims to partition latent variables into semantically meaningful factors, such 

that changes in one factor correspond to isolated variations in the data [2]. Formally, given an 

observation with underlying factors, a disentangled encoder learns, where captures shared 

(modality-invariant) features and encodes modality-unique characteristics. This separation 

enables robust transfer learning, as demonstrated in [14], where invariant features generalize 

better across domains. 

3.3. Adversarial Training for Domain Adaptation 

Adversarial methods align feature distributions by introducing a discriminator Dϕ  that 

distinguishes between source and target domains [4]. The encoder f
θ
 is trained to fool Dϕ , 

forcing it to produce domain-invariant representations. The minimax objective is given by: 

min
θ

max
ϕ

Ex∼p
s
[logDϕ(f

θ
(x))]+Ex∼p

t
[log(1-Dϕ(f

θ
(x)))]    (1) 

where p
s
 and p

t
 denote source and target distributions. Recent variants like Wasserstein 

GANs [10] improve stability by using Earth-Mover distance instead of Jensen-Shannon 

divergence. 

3.4. Contrastive Learning for Cross-Modal Alignment 

Contrastive methods learn representations by maximizing agreement between positive pairs 

while repelling negatives [5]. For multimodal pairs (xi, xj), the InfoNCE loss [15] encourages 

aligned embeddings: 

Lcont=-log
exp(zi

Tzj/τ)

∑ expK
k=1 (zi

Tzk/τ)
    (2) 

where τ is a temperature hyperparameter. This framework has proven effective in aligning 

text, image, and sensor modalities [16]. 

3.5. Attention Mechanisms in Multimodal Processing 

Attention dynamically weights feature relevance based on inter-modal dependencies. Given 

queries Q, keys K, and values V, scaled dot-product attention computes: 
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Attention(Q,K,V)=softmax (
QKT

√dk
)V    (3) 

Transformers [17] extend this to capture long-range dependencies, while sparse variants [18] 

improve efficiency for high-dimensional inputs like sensor streams. 

These concepts collectively inform our architecture’s design, particularly the integration of 

disentanglement with adversarial and contrastive objectives. The next section details how we 

combine these components into a unified framework for EIS applications. 

4.Proposed Hybrid Neural Architecture 

The proposed architecture integrates modality-specific encoders with disentangled 

representation learning and adversarial training to extract domain-invariant features from 

heterogeneous data sources. This section details the technical components and their interactions, 

providing a comprehensive blueprint for implementation. 

4.1. Overall Architecture 

The system processes multimodal inputs through parallel Transformer-based encoders, each 

tailored to a specific modality (e.g., text, images, or sensor data). Let denote an input from 

modality, which is mapped to a latent representation via a modality-specific encoder: 

hm=Em(xm)    (4) 

These encoders employ sparse self-attention to reduce computational overhead, making them 

suitable for real-time EIS applications. The latent representations are then fed into a 

disentanglement module, which decomposes them into modality-specific (Sm) and cross-

modal-invariant (Cm) components. 

 

Figure 1. Overview of the Electronic Information System with the Proposed Neural Architecture 
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4.2. Disentanglement and Invariance Enforcement 

The disentanglement module uses gated projections to isolate invariant features. For each 

modality, the components are computed as: 

sm=σ(Wshm)⊙hm    (5) 

cm=σ(Wchm)⊙hm    (6) 

Here, Ws and Wc are learnable projection matrices, σ denotes the sigmoid activation, and ⊙ 

represents element-wise multiplication. The gating mechanism ensures that sm  captures 

modality-unique patterns, while cm retains only cross-modal shared features. 

4.3. Training Objectives and Loss Functions 

The total training loss combines adversarial, contrastive, and reconstruction terms: 

Ltotal=λ1Ladv+λ2Lalign+λ3Lrecon    (7) 

Adversarial training is applied exclusively to the invariant subspace cm to enforce domain 

invariance. A discriminator D attempts to classify the modality source of cm, while the encoders 

are trained to fool it via a gradient reversal layer (GRL). The adversarial loss is formulated 

using Wasserstein GAN objectives for stability: 

Ladv=Em[D(cm)]    (8) 

The contrastive alignment loss Lalign minimizes the distance between invariant features of 

paired samples across modalities: 

Lalign= ∑ ∥

m≠m'

cm-cm'∥2
2    (9) 

Reconstruction loss Lrecon  ensures that the combined features [sm,cm]  preserve sufficient 

information to reconstruct the original input: 

Lrecon=Em∥xm-Dm([sm,cm])∥2
2    (10) 

where Dm is a modality-specific decoder. 

4.4. Architectural Details for EIS Integration 

During inference, a cross-modal attention mechanism dynamically aggregates invariant 

features. A learned query vector q computes attention weights αm over the invariant features cm: 
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αm=softmax (
qTK

√d
)
m

, K=[c1,…,cN]    (11) 

The aggregated output cagg= ∑ αmm cm is then passed to downstream EIS components, such 

as control policies or decision modules. Residual connections around the disentanglement 

module stabilize training, while sparse attention in the encoders ensures scalability for high-

dimensional sensor data. 

The architecture replaces traditional feature engineering pipelines in EIS, enabling end-to-

end learning from raw multimodal inputs. For example, in smart grid applications, cagg 

dynamically adjusts energy distribution based on real-time sensor readings and weather 

forecasts, optimizing system performance under varying conditions. 

 

Figure 2. Detailed View of the Proposed Neural Architecture 

5. Experimental Setup 

To evaluate the proposed hybrid neural architecture, we conducted extensive experiments 

across multiple benchmark datasets and real-world electronic information system (EIS) 

applications. This section details the datasets, baseline methods, implementation specifics, and 

evaluation metrics used in our study. 

5.1. Datasets 

We selected three multimodal datasets that reflect the diversity of EIS applications, providing 

detailed statistics on sample size and modality composition to ensure reproducibility and 

contextual understanding: 

•   Multimodal Sensor Fusion Dataset (MSFD) [19] Contains 10,000 samples of synchronized 

text reports (averaging 150 tokens), thermal images (256x256 resolution), and vibration sensor 

readings (1D time-series, 1000 points per sample) from industrial equipment. This simulates 
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condition monitoring scenarios in smart factories. Domain shifts were simulated by collecting 

data from three distinct factories with varying machinery configurations. 

•   Urban Traffic Analysis Corpus (UTAC) [20] Comprises 15,000 samples integrating traffic 

camera feeds (640x480 resolution), LiDAR point clouds (averaging 10,000 points per scan), 

and acoustic sensor data (1D time-series, 5 seconds at 1kHz sampling rate) from intelligent 

transportation systems. Domain shifts were induced by data collection across four different 

seasons. 

• Smart Grid Anomaly Detection (SGAD) [21]（Consists of 8,500 samples） combining 

power consumption logs (50-dimensional vector per time step), textual weather reports (5 key 

features: temperature, humidity, wind speed, precipitation, cloud cover), and phasor 

measurement unit (PMU) readings (10 dimensions sampled at 60Hz). Domain shifts were 

simulated through diverse weather events (storms, heatwaves) and significant load fluctuations. 

Each dataset was partitioned into training (60%), validation (20%), and test (20%) sets. The 

detailed composition ensures clarity on the scale and nature of the multimodal inputs processed 

by the evaluated models. 

5.2. Baseline Methods 

We compared our architecture against four state-of-the-art approaches: 

• Modality-Specific Encoders (MSE) [22] processes each modality independently with 

dedicated networks, followed by late fusion. 

• Cross-Modal Autoencoder (CMA) [23] employs shared latent spaces across modalities via 

reconstruction objectives. 

• Adversarial Multimodal Alignment (AMA) [24] uses gradient reversal layers to align 

modality distributions. 

• Disentangled Multimodal Transformer (DMT) [25] combines transformer encoders with 

variational disentanglement. 

All baselines were re-implemented using their original architectures but trained on our 

datasets for fair comparison. 

5.3. Implementation Details 

The proposed architecture was implemented in PyTorch 2.0 with the following 

configurations. All experiments were conducted on a server equipped with NVIDIA A100 
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80GB GPUs and dual Intel Xeon Platinum 8480C CPUs. 

• Encoders: Each modality used a 6-layer sparse transformer [18] with 8 attention heads and 

hidden dimension 512. Text inputs were tokenized via BERT-base [26], while images used 

16x16 patch embeddings. 

• Disentanglement Module: The gating networks and were implemented as two-layer MLPs 

with ReLU activation, projecting to 256-D subspaces. 

• Adversarial Training: The discriminator consisted of three linear layers (512 → 256 → 1) 

with spectral normalization [27]. The Wasserstein GAN objective used a gradient penalty 

coefficient of 10. 

• Training: Adam optimizer [28] with learning rate 3e-5, batch size 64, and early stopping 

on validation loss (patience=10). The loss weights were set to 1.0, 0.5, and 0.2 respectively 

based on grid search on the validation set. 

• Inference Latency: To assess real-time applicability critical for EIS, we measured the 

average end-to-end inference latency (from raw input to aggregated feature on the test set. On 

a single NVIDIA A100 GPU, the proposed model achieved an average latency of 28.1 ms per 

sample for single-sample inference. When processing a batch size of 64 samples, the average 

latency per sample reduced to 8.7 ms. This efficiency is primarily attributed to the sparse 

attention mechanism and optimized implementation. 

5.4. Evaluation Metrics 

Performance was assessed using: 

• Domain Invariance Score (DIS): Measures feature distribution alignment across domains 

using Maximum Mean Discrepancy (MMD) [29]. Lower values indicate better invariance. 

• Modality Alignment Error (MAE): Computes the average ℓ2  distance between paired 

invariant features c𝑚 across modalities. 

• Downstream Accuracy: Task-specific metrics (e.g., F1-score for anomaly detection in 

SGAD, mean absolute error for traffic prediction in UTAC). 

All metrics were computed on the held-out test set with five random seeds to report mean ± 

standard deviation. Statistical significance was tested via paired t-tests (p<0.01). 
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6. Experimental Results 

To validate the effectiveness of the proposed hybrid neural architecture, we conducted 

comprehensive evaluations across multiple dimensions: domain invariance, cross-modal 

alignment, and downstream task performance. The results demonstrate significant 

improvements over existing methods while maintaining computational efficiency suitable for 

real-world electronic information systems (EIS). 

6.1. Domain Invariance and Feature Disentanglement 

The proposed architecture achieved superior domain invariance compared to baseline 

methods, as measured by the Domain Invariance Score (DIS). Table 1 summarizes the results 

across all datasets, where lower DIS values indicate better alignment of feature distributions 

across different domains (e.g., factories in MSFD or seasons in UTAC). 

Table 1. Domain Invariance Score (DIS) Comparison 

Method MSFD (↓) UTAC (↓) SGAD (↓) 

MSE 0.48 ± 0.03 0.52 ± 0.04 0.45 ± 0.02 

CMA 0.39 ± 0.02 0.41 ± 0.03 0.38 ± 0.01 

AMA 0.31 ± 0.02 0.35 ± 0.02 0.29 ± 0.01 

DMT 0.28 ± 0.01 0.32 ± 0.01 0.26 ± 0.01 

Ours 0.19 ± 0.01 0.22 ± 0.01 0.18 ± 0.01 

The adversarial training component played a critical role in suppressing domain-specific 

artifacts, reducing DIS by 32% compared to the best baseline (DMT) on SGAD. This aligns 

with the architecture’s design goal of isolating invariant features robust to distribution shifts. 

 

Figure 3. Disentangled representations of modality-specific and invariant features in a 2D latent space 



Modality-Independent Disentangled Neural Architecture for Enhanced Artificial Intelligence 

in Electronic Information Systems 

74 

Figure 3 visualizes the disentangled features using t-SNE, demonstrating clear separation 

between modality-specific noise (clustered by domain) and invariant features (overlapping 

across domains). The gating mechanism in Equations 5–6 effectively preserved task-relevant 

patterns while filtering out spurious correlations, as evidenced by the tighter clustering of 

invariant features. 

6.2. Cross-Modal Alignment Performance 

The contrastive alignment loss (Equation 9) ensured consistent representations across 

modalities, achieving a Modality Alignment Error (MAE) of 0.15 ± 0.01 on MSFD—a 40% 

improvement over CMA, which lacks explicit alignment objectives. The cross-modal attention 

mechanism (Equation 11) further enhanced this by dynamically weighting feature relevance 

during inference. 

Table 2. Modality Alignment Error (MAE) Comparison 

Method MSFD (↓) UTAC (↓) SGAD (↓) 

MSE 0.38 ± 0.02 0.42 ± 0.03 0.35 ± 0.02 

CMA 0.25 ± 0.01 0.28 ± 0.02 0.24 ± 0.01 

AMA 0.21 ± 0.01 0.23 ± 0.01 0.20 ± 0.01 

DMT 0.18 ± 0.01 0.20 ± 0.01 0.17 ± 0.01 

Ours 0.15 ± 0.01 0.16 ± 0.01 0.14 ± 0.01 

 

Figure 4. Heatmap of cross-modal attention weights for invariant feature aggregation 

Figure 4 illustrates the attention weights for aggregating invariant features in SGAD, showing 
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adaptive prioritization of weather data during storms and PMU readings during grid instability. 

This adaptability is absent in static fusion methods like MSE. 

6.3. Downstream Task Accuracy 

The architecture’s improvements in invariance and alignment translated to superior 

performance in EIS-specific tasks: 

• Smart Grid Anomaly Detection (SGAD): Achieved 94.3% F1-score, outperforming 

DMT by 6.2% due to better handling of weather-induced distribution shifts. 

• Traffic Flow Prediction (UTAC): Reduced MAE to 3.2 vehicles/min, a 19% 

improvement over CMA, attributed to robust fusion of LiDAR and camera data. 

• Equipment Fault Diagnosis (MSFD): Attained 89.7% accuracy, surpassing AMA by 8.5% 

by effectively combining vibration and thermal signatures. 

Table 3. Downstream Task Performance 

Task Metric MSE CMA AMA DMT Ours 

SGAD F1 (%) 82.1 85.4 88.1 88.8 94.3 

UTAC MAE 4.1 3.9 3.5 3.3 3.2 

MSFD Acc. (%) 78.3 82.6 81.2 83.5 89.7 

6.4. Ablation Study 

To isolate the contributions of key components, we evaluated variants of our architecture: 

1. w/o Adversarial Training: DIS increased by 0.12 on average, confirming its necessity for 

domain invariance. 

2. w/o Contrastive Loss: MAE rose by 0.09, highlighting the importance of explicit cross-

modal alignment. 

3. w/o Attention: Task accuracy dropped 4–7%, underscoring the dynamic weighting 

mechanism’s role. 

Table 4. Ablation Study Results 

Variant DIS (↑) MAE (↑) SGAD F1 (↓) 

Full Model 0.19 0.15 94.3 

w/o Adversarial 0.31 0.15 89.1 

w/o Contrastive 0.19 0.24 90.5 

w/o Attention 0.19 0.15 87.6 
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The full model consistently outperformed ablated versions, validating the synergistic design 

of disentanglement, adversarial training, and dynamic attention. 

7. Discussion and Future Work 

7.1. Limitations and Potential Improvements 

While the proposed architecture demonstrates strong performance across multiple datasets, 

several limitations warrant discussion. First, the current implementation assumes synchronized 

multimodal inputs during training, which may not hold in real-world EIS deployments where 

data streams arrive asynchronously. Extending the framework to handle temporal misalignment 

through learnable buffering mechanisms could enhance practicality. Second, the adversarial 

training component, though effective, introduces additional computational overhead during the 

initial phases of optimization. Exploring techniques like curriculum-based domain adaptation 

[30] or self-supervised pretraining [31] may stabilize convergence while reducing training time. 

The disentanglement module’s reliance on gated projections (Equations 5–6) also presents 

opportunities for refinement. Although the current design successfully isolates modality-

specific and invariant features, the binary-like gating operation may discard potentially useful 

information. Incorporating soft masking with entropy regularization [32] could enable more 

nuanced feature separation while preserving task-relevant details. Furthermore, the architecture 

currently processes each modality through independent encoders, which limits cross-modal 

interaction during early representation learning. Introducing lightweight cross-attention layers 

between encoders, as in [33], might capture inter-modal dependencies more effectively without 

significantly increasing parameter count. 

7.2. Broader Applications and Impact 

Beyond the evaluated EIS tasks, the architecture’s modality-agnostic design holds promise 

for other domains requiring robust multimodal fusion. In healthcare, for instance, integrating 

electronic health records (EHRs) with medical imaging and wearable sensor data could improve 

diagnostic accuracy while mitigating biases inherent to single-modality systems [34]. Similarly, 

autonomous systems operating in dynamic environments—such as drones or robotic 

platforms—could leverage the framework’s adversarial robustness to adapt to unseen weather 

conditions or sensor degradation [35]. 

The architecture’s emphasis on computational efficiency via sparse attention and residual 

connections also aligns with growing demands for edge-compatible AI. Deploying lightweight 
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variants on IoT devices could enable real-time analysis of multimodal sensor networks in smart 

cities or industrial IoT? However, such deployments would require further optimization, 

including quantization-aware training [37] and hardware-specific acceleration [38]. 

7.3. Ethical Considerations and Responsible Deployment 

As with any AI system integrated into critical infrastructure, ethical risks must be proactively 

addressed. The architecture’s adversarial training component, while improving domain 

invariance, could inadvertently suppress salient features correlated with minority subgroups in 

the data, exacerbating fairness issues [39]. Regular audits using disparity metrics [40] and the 

incorporation of fairness-aware loss functions [41] are essential to mitigate such biases. 

Another concern stems from the system’s reliance on cross-modal alignment, which assumes 

semantic consistency between paired samples (e.g., a thermal image and its corresponding 

vibration sensor reading). In practice, noisy or incorrectly labeled pairings—common in large-

scale EIS datasets—could propagate errors through the contrastive loss (Equation 9). 

Techniques like noise-tolerant alignment [42] or uncertainty-aware weighting [43] should be 

investigated to improve robustness. 

Finally, the dynamic attention mechanism, though adaptive, operates as a black box, 

complicating interpretability for stakeholders. Integrating explainability tools, such as attention 

rollout [44] or concept activation vectors [45], could provide actionable insights into how the 

system prioritizes modalities during decision-making. This transparency is particularly crucial 

for high-stakes applications like smart grid control or medical diagnosis, where erroneous 

predictions may have severe consequences. 

Future work should prioritize these directions while expanding the architecture’s versatility. 

For example, integrating few-shot adaptation mechanisms [46] could enable rapid deployment 

in resource-constrained settings, and exploring federated learning frameworks [47] would 

support privacy-preserving collaborative training across distributed EIS nodes. 

8. Conclusion 

The proposed modality-independent disentangled neural architecture presents a significant 

advancement in artificial intelligence for electronic information systems (EIS). By integrating 

Transformer-based encoders with adversarial training and contrastive learning, the framework 

effectively addresses key challenges in multimodal data processing, including domain shifts, 

modality bias, and computational inefficiency. The disentanglement module successfully 

isolates domain-invariant features while preserving modality-specific characteristics, enabling 
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robust performance across diverse EIS applications. Experimental results demonstrate 

substantial improvements in domain invariance, cross-modal alignment, and downstream task 

accuracy compared to existing methods. 

The architecture’s dynamic attention mechanism further enhances adaptability, allowing 

real-time feature aggregation tailored to varying input conditions. This capability is particularly 

valuable in critical infrastructure applications, where system reliability depends on accurate, 

real-time decision-making. The framework’s modular design also ensures compatibility with 

existing EIS components, facilitating seamless integration without requiring extensive system 

overhauls. 

While the current implementation shows promising results, future work should explore 

extensions to asynchronous data streams and further optimization for edge deployment. The 

ethical implications of automated decision-making in EIS also warrant continued attention, 

particularly regarding fairness and interpretability. Nevertheless, the architecture establishes a 

strong foundation for next-generation AI systems capable of processing heterogeneous data 

with unprecedented robustness and efficiency. Its potential applications span smart grids, 

industrial automation, healthcare, and beyond, marking a significant step toward more 

intelligent and adaptive electronic information systems. 
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Abstract. Given the increasing low-carbon awareness among 

consumers, this study develops a differential game model 

involving a manufacturer, a retailer, and a blockchain 

technology service provider to explore low-carbon Closed-Loop 

Supply Chain (CLSC). By comparing two scenarios in which 

manufacturers either adopt or refrain from adopting blockchain 

technology, we examine how its integration influences decision-

making, performance, and low-carbon outcome across the 

supply chain. Analysis and Numerical simulations validate the 

findings and reveal key insights are as follows: (1) Product 

pricing, market demand, low-carbon promotional effort, return 

rate, and overall low-carbon performance are positively 

correlated with market scale and increase proportionately with 

consumer environmental consciousness, irrespective of 

blockchain adoption. (2) Increasing consumer environmental 

awareness and blockchain service commission rate are found to 

significantly enhance product pricing, market demand, 

investment in low-carbon effort, recycling efficiency, overall 

sustainability level, and the profitability of supply chain 

members. (3) The low-carbon level exhibits an increasing trend 

over time and eventually converges to a steady state. (4) As the 

discount rate increases, firms’ incentives for low-carbon 

investment decline, leading to lower profits. (5) The impact of 

the low-carbon decay coefficient on profit shows a rise-then-fall 

pattern, with profits initially increasing and then decreasing, 

while the rate of decline becomes more gradual at higher decay 

levels. Through full life-cycle carbon emission monitoring, 

blockchain technology enhances consumer surplus and can 

accelerate the achievement of the “dual-carbon” goals. This 

study provides theoretical support for the application conditions 

of block chain technology, the dynamic optimization pathways, 

and policy design within CLSC, thereby contributing to 

enterprises' low-carbon transitions and the development of 

circular resource systems. 

 

Keywords: blockchain, low-carbon emission reduction, closed-

loop chain, differential game. 
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1. Introduction 

The global electronic waste (e-waste) crisis is exacerbating environmental degradation at an 

alarming rate. According to the United Nations' Global E-waste Monitor 2024 report, the total 

volume of e-waste reached 62 million metric tons in 2022, with less than 24% of materials 

being properly recycled. The remaining 76% entered the environment through landfilling, 

incineration, or illegal disposal channels, resulting in annual contamination of soil and water 

resources with approximately 50 million metric tons of heavy metals and hazardous substances 

(e.g., lead, mercury). If current trends persist, global e-waste generation is projected to exceed 

74.7 million metric tons by 2030. Numerous studies and corporate practices demonstrate that 

recycling and remanufacturing can substantially reduce resource consumption and emissions. 

Closed-loop recovery can achieve 50% costs savings, 60% energy consumption reduction, 70% 

raw material conservation, and 80% pollutant emission reduction compared to conventional 

production methods [1]. In renewable energy equipment sectors, ONE WIND NEW ENERGY 

Co., Ltd. annually recycles over 500 wind turbines, conserving 3,000 tons of steel and 400 tons 

of copper while reducing CO2 emissions by over 1 million metric tons. This initiative 

concurrently generates 1.8 billion kWh of renewable electricity. 

The literature relevant to this study includes three domains: recycling/remanufacturing, low-

carbon emissions reduction, and blockchain technology. Currently, recycling and 

remanufacturing have emerged as a critical research field in modern manufacturing, focusing 

on costs reduction and dual economic-environmental benefits through circular utilization of 

end-of-life products. Existing studies predominantly concentrated on recycling channel and 

incentive mechanism [2-3]. 

Low-carbon field have become central to global climate change, with extensive scholarly 

investigations into factors influencing emission reduction in supply chain, including consumer’ 

low-carbon preference, supply chain members' fairness/altruism, and policy interventions. 

Zhang et al. [4] examined how consumer low-carbon awareness and altruistic preferences 

impact supply chain dynamics, revealing that members' altruistic behaviors significantly affect 

carbon reduction investment and recycling performance. Similarly, Gao et al. [5] incorporated 

consumer low-carbon preferences into their analysis of decision-making patterns among low-

carbon supply chain members under varying governmental incentive polices. Li et al. [6] 

investigated fairness concern between the manufacturer and retailer in low-carbon supply chain, 

systematically analyzing the impacts of equity preferences on supply chain profitability, carbon 

reduction level, warranty periods, and revenue-sharing mechanisms. Luo et al. [7] explored the 
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manufacturer’ strategic decisions regarding investments in low-carbon technologies under 

carbon tax policies, quantifying their cascading effects on conventional manufacturing and 

remanufacturing operations. Collectively, these studies highlight the critical role of integrating 

consumer behavioral patterns, policies, and supply chain collaborative mechanisms to enhance 

both recycling/remanufacturing efficiency and low-carbon outcomes. Such systemic integration 

facilitates the attainment of multidimensional benefits across economic, social, and 

environmental dimensions, thereby promoting comprehensive and sustainable value creation. 

Blockchain technology is progressively being integrated into supply chain management, 

introducing transformative solutions and developmental paradigms. A growing number of 

literatures has explored its multifaceted applications and associated benefits. Chod et al. [8] 

demonstrated the financial advantages of blockchain-enhanced supply chain transparency, 

revealing that its adoption significantly reduces financing costs while improving operational 

efficiency. Ma et al. [9] further investigated blockchain implementation by the manufacturer or 

retailer in CLSC, identifying its capacity to strengthen brand goodwill, stimulate market 

demand, and achieve triple sustainability across economy, environment, and society. Jia et al. 

[10] examined blockchain applications in retired power battery CLSC by constructing decision 

models under three scenarios: non-blockchain adoption, manufacturer-led costs assumption, 

and costs-sharing between the manufacturer and distributor. Their analysis quantified 

blockchain's impacts on information traceability, supply chain member profitability, consumer 

surplus, environmental footprint, and social welfare. Zhang et al. [11] analyzed quality 

disclosure strategies in dual-channel supply chain applying price signaling and blockchain 

technology. They found that while blockchain enhances information transparency and demand, 

the high-quality manufacturer may not benefit proportionally in the market due to significant 

channel dominance disparities. 

These studies collectively have underlined blockchain's transformative potentials in supply 

chain management. Its inherent characteristics—transparency, traceability, and 

decentralization—substantially improve informational visibility across supply networks, 

strengthen consumer trust, and advance corporate sustainability strategies. By establishing 

trusted data-sharing platforms, blockchain technology effectively mitigates information 

asymmetry while incentivizing collaborative low-carbon production and green operations 

among supply chain members, thereby achieving dual economic-environmental outcomes. The 

manufacturer can leverage blockchain to implement real-time data tracking and closed-loop 

management across procurement, production, logistics, and recycling processes. This end-to-
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end traceability ensures verifiable operational data, optimizes resource efficiency, and reduces 

carbon emissions. Notable implementations include: Dell partnered with AntChain (a 

blockchain service provider) to enhance recycled metal utilization rates, reducing e-waste by 

over 10,000 metric tons; Volvo collaborated with Circulor to trace cobalt and lithium sources 

in EV batteries, ensuring conflict-free mineral sourcing and compliance with low-carbon 

standards, thereby improving supply chain emission transparency and return rates. 

In summary, the concurrent integration of recycling/remanufacturing and low-carbon 

emission reduction represents a practical norm in CLSC. However, existing literatures 

predominantly focus on either return channel or low-carbon reduction investment, with limited 

attention to the simultaneous optimization of recycling rate decisions and low-carbon reduction 

strategies. In practice, these two decision-making domains—return rate determination and low-

carbon reduction initiatives—often coexist in an interdependent relationship, mutually 

influencing and constraining one another. Therefore, this study innovatively conceptualizes 

low-carbon level as dynamic variable and investigates their evolution within a dynamic CLSC 

framework. 

Furthermore, while blockchain technology has garnered increasing attention in CLSC 

application, few studies have systematically analyzed its dynamic impacts on CLSC operations 

from a longitudinal perspective. Jia et al. employed a static game-theoretic model to examine 

blockchain’s effects on information traceability and profitability, without accounting for the 

temporal decay of low‑carbon levels. In contrast, this study treated the low‑carbon level as a 

dynamic state variable within a differential game framework to capture the accumulation and 

attenuation of carbon‑reduction benefits and enable a more nuanced analysis of low‑carbon 

investment efficacy evolution. Although Ma et al. examined the effects of the platform-based 

“blockchain - sales model” combination on platform and member’ performances but did not 

investigate the mechanisms by which consumer low‑carbon awareness influences pricing, 

demand, and profitability. Although the study integrated blockchain into CLSC and analyze its 

dynamic impact on brand reputation, they neither addressed carbon‑reduction issues nor 

elucidated blockchain’s dynamic role in affecting carbon‑reduction levels. To bridge these gaps, 

this paper explicitly incorporates a consumer low‑carbon awareness parameter into a dynamic 

model, quantifying its effects on market demand elasticity, the marginal benefits of low‑carbon 

promotion efforts, and overall supply‑chain performance, thereby providing a comprehensive 

theoretical foundation for stimulating end‑consumer green purchases and optimizing 

coordinated carbon‑reduction strategies. 
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Consequently, this study will address the following research questions:(1) What constitutes 

the equilibrium decisions of supply chain members in a CLSC system? (2) Under what 

conditions should manufacturers implement blockchain technology? (3) How does blockchain 

adoption influence the operation, performance and consumer in CLSC? (4) How does low-

carbon level evolve under different operational scenarios? (5) What role does consumers’ low-

carbon awareness play in shaping CLSC dynamics?  

2. Model Description and Assumption 

2.1. Model description 

This study examines continuous-time dynamics for [0, ]t  . Dynamic CLSC system 

comprising a manufacturer (M), retailer (R), and blockchain technology provider (T), under the 

premise of consumer low-carbon awareness. The manufacturer can produce and wholesale new 

products, decide whether to adopt third-party blockchain services, and delegate product 

recycling operations to the retailer. The retailer engages in product retailing, recycling activities, 

and invests in dual efforts: low-carbon promotion initiatives and recycling optimization. Should 

the manufacturer implements blockchain technology, the Blockchain service provider (T) will 

concurrently allocate technical efforts to support CLSC system integration. 

Table 1.  Notions for the model 

Notion Meaning 

Decision variables 

( )w t  Whale price 

( )p t  Retail price 

( )r t  Low-carbon promotion efforts 

( )t  Return rate 

( )L t  Block chain technology 

Stata variable 

( )e t  Low carbon level 

Parameters 

Q  Demand 

a  Market size 

  Consumer's sensitivity coefficient towards price  >0 

  Consumers' preference for low-carbon levels 0   

  
The marginal profit of the manufacturer from recycling and 

remanufacturing products 0   

A  Marginal profit of retailers in recycling products 0A   

m
f  The residual value per unit of remanufactured products derived from 

used materials. 
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Notion Meaning 

c
f  

The unit transfer payment price paid by the manufacturer to the 

retailer for acquiring used products. 

r
f  The unit recycling costs for used products. 

  
The commission rate paid by the manufacturer to the third-party service 

provider  >0. 

r
k

 
The costs coefficient for the promotion efforts of low-carbon initiatives 

0
r

k  . 

c
k

 Costs coefficient of effort invested in recycling 0
c

k  . 

l
k

 
The costs coefficient of blockchain technology's efforts to be invested 

0
l

k  . 

  
The influence coefficient of the low-carbon publicity efforts on the low-

carbon level 0  . 

v  
The influence coefficient of blockchain technology on the level of low 

carbon emissions 0v  . 

  The attenuation coefficient of the low-carbon level over time 0  . 

  Discount rate 0  . 

i

M


 Manufacturer's profit. 

i

R


 Retailer's profit. 

T


 The profits of the technical service providers. 

i

CS  Consumer’s surplus. 

i  
{ , }i N Y , N indicates without blockchain technology, Y indicates the 

situation with embedded blockchain technology. 

2.2. Model description 

Assumption1. Considering consumers' low-carbon consciousness, their purchasing behavior 

is influenced not only by price but also by the product’s low-carbon level. Consequently, the 

linear market demand function as: 

𝑄 = (𝑎 − 𝛽𝑝(𝑡)) + 𝜂𝑒(𝑡).       (1) 

Assumption 2: The manufacturer’s profit originates from product wholesaling and 

remanufacturing of used products. To highlight the research focus and reduce model complexity, 

production costs are assumed to be zero, and new and remanufactured products are 

homogeneous. This assumption, adopted by Shen et al. [12] has been demonstrated to have no 

material impact on key findings. The manufacturer’s unit profit from remanufacturing is 

denoted as Δ = 𝑓𝑚 − 𝑓𝑐. The retailer’s profit stems from product sales. The profit per unit of 

new products is  𝑝(𝑡) − 𝑤(𝑡), while the profit per unit of recycled products is 𝐴 = 𝑓𝑐 − 𝑓𝑟. 

The blockchain technology service provider generates revenue primarily through technical 

services offered to the manufacturer, quantified as 𝜅𝐿(𝑡). 

Assumption 3: Drawing on the convexity assumptions for general costs in literature[9], the 
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retailer invests in low-carbon promotion efforts to enhance consumer trust, raise low-carbon 

awareness, and market sustainable products. The associated costs is modeled as 21
( )

2
rk tr . 

Additionally, the retailer expends recycling efforts to acquire used products, incurring a costs 

of 21
( )

2
ck t . The manufacturer may collaborate with a blockchain technology provider to 

improve supply chain transparency and traceability, ensuring full lifecycle compliance with 

low-carbon standards, optimizing production and recycling processes, and further reducing 

carbon emissions. The blockchain service costs is formulated as 2 )
1

2
(lk tL . All costs functions 

adhere to the rule of diminishing marginal returns. 

Assumption 4: The low-carbon level ( )e t  is positively correlated with low-carbon promotion 

efforts and blockchain technology efforts. Its temporal evolution is governed by the differential 

equation: 

𝑒(𝑡)
𝑔

= 𝜍𝑟(𝑡) + 𝑣𝐿(𝑡) − 𝛿𝑒(𝑡), 𝑒(0) = 0      (2) 

When ( ) 0L t = , indicates Without blockchain in CLSC. 

Assumption 5: Over the continuous time 𝑡 ∈ [0, ∞] , the manufacturer, retailer, and 

blockchain service provider share an identical discount factor. All supply chain members are 

risk-neutral, operate under symmetric information, and maximize their individual profits. 

Assumption 6: Referencing relevant literature[13], and to ensure the practical significance of 

the study, the following constraints must be satisfied under non-negativity conditions for market 

demand , profit, state variable, and decision variables: 

 
2 2

2

(2 )

4 ( )
r

k

   


  

+


+
,

2 2

2 2 2

( 2 )( )
{

2 ( )

r

c

r

A A k
k Max

k

  

    

+  +


+ −
,

2 2

2 2 2

2 ( )( ) 1
, 2 }

3 ( ) 2

r

r

A A k
A A

k

   
 

      

+  +  
+  + 

+ − + 
. 

These imply that consumer price sensitivity necessitates non-trivial recycling effort costs to 

sustain CLSC operations. Subsequent analyses are conducted under these constraints. 

3. Model development and analysis 

3.1 Model development 

Based on the above assumptions, this study investigates the impact of blockchain technology 

adoption by the manufacturer on the decision-making and performance of members within a 

CLSC. Two models are developed under different scenarios: (1) the scenario without 

blockchain technology, denoted as the N-mode; and (2) the scenario with blockchain 
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technology adoption, denoted as the Y mode. Superscripts are used to indicate the scenario, 

while subscripts M, R, and T represent the manufacturer, retailer, and blockchain technology 

service provider, respectively. 

The profit functions of the supply chain members are defined as: 

𝑚𝑎𝑥
𝑤(𝑡)

𝜋𝑀
𝑖 = ∫ 𝑒−𝜌𝑡((𝑤(𝑡) + 𝛥𝜏(𝑡))𝑄 − 𝜅𝐿(𝑡)

∞

0
)𝑑𝑡      (3) 

𝑚𝑎𝑥
𝑝(𝑡),𝜏(𝑡),𝑟(𝑡)

𝜋𝑅
𝑖 = ∫ 𝑒−𝜌𝑡𝑡

0
(𝑄(𝐴𝜏(𝑡) + 𝑝(𝑡) − 𝑤(𝑡)) −

𝑘𝑐𝜏2(𝑡)

2
−

𝑘𝑟𝑟2(𝑡)

2
) 𝑑𝑡   (4) 

𝑚𝑎𝑥𝜋𝑇
𝐿(𝑡)

= ∫ 𝑒−𝜌𝑡(𝜅𝐿(𝑡) −
𝑘𝑙𝐿2(𝑡)

2
)

∞

0
𝑑𝑡        (5) 

.s t 𝑒(𝑡)
·

= 𝜍𝑟(𝑡) + 𝑣𝐿(𝑡) − 𝛿𝑒(𝑡), 𝑒(0) = 0.                                  (6) 

When ( )L t =0, it represents the scenario without blockchain technology. 

The corresponding Hamilton functions as 

𝐻𝑀
𝑁 = ∫ 𝑒−𝜌𝑡((𝑤(𝑡) + 𝛥𝜏(𝑡))𝑄 + 𝜆1(𝑡)(𝜍𝑟(𝑡) − 𝛿𝑒(𝑡)))

∞

0
𝑑𝑡     (6) 

𝐻𝑅
𝑁 = ∫ 𝑒−𝜌𝑡 ((𝑄(𝐴𝜏(𝑡) + 𝑝(𝑡) − 𝑤(𝑡)) −

𝑘𝑐𝜏2(𝑡)

2
−

𝑘𝑟𝑟2(𝑡)

2
) + 𝜆2(𝑡)(𝜍𝑟(𝑡) − 𝛿𝑒(𝑡)))

∞

0
𝑑𝑡           (7) 

 𝐻𝑀
𝑌 = ∫ 𝑒−𝜌𝑡 (∫ ((𝑤(𝑡) + 𝛥𝜏(𝑡))𝑄 − 𝜅𝐿(𝑡)

∞

0
) + 𝜆3(𝑡)(𝜍𝑟(𝑡) + 𝑣𝐿(𝑡) − 𝛿𝑒(𝑡)))

∞

0
𝑑𝑡              (8) 

𝐻𝑅
𝑌 = ∫ 𝑒−𝜌𝑡 (∫ (𝑄(𝐴𝜏(𝑡) + 𝑝(𝑡) − 𝑤(𝑡)) −

𝑘𝑐𝜏2(𝑡)

2
−

𝑘𝑟𝑟2(𝑡)

2
)

𝑡

0
+ 𝜆4(𝑡)(𝜍𝑟(𝑡) + 𝑣𝐿(𝑡) − 𝛿𝑒(𝑡)))

∞

0
𝑑𝑡                   (9) 

𝐻𝑇 = ∫ 𝑒−𝜌𝑡 ((𝜅𝐿(𝑡) −
𝑘𝑙𝐿2(𝑡)

2
) + 𝜆5(𝑡)(𝜍𝑟(𝑡) + 𝑣𝐿(𝑡) − 𝛿𝑒(𝑡)))

∞

0
𝑑𝑡.    (10) 

Where  𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5 denote the adjoint variables, representing the shadow prices 

associated with the state variable 𝑒(𝑡). 

Propositions: Assuming all supply chain members are rational, the equilibrium outcomes 

under the steady state of the CLSC system (𝑡 → ∞) are shown in the table below. 

Table 2.  Variables and performance of supply chain 

Decision variables 

and perfSormance 

Without blockchain 

N Model 

With blockchain 

Y Model 

Wholesale price 
1

2 2

0

( )
N r

r c

a k
w

B
t

k B k



  


=
+

 
( )( )
( )0

1 2

2 2

( 2 ) 2
( )

2 (2 )

c cY

l c

A A k k
w

D
t

k

D

D k



     


+  − +
=

+ +
 

Retail price 
2

2 2

0

( )
N r

r c

a k
p

B
t

k B k



  


=
+

 
( )( )
( )2

1 2

2

0

2 ( ) 3
( )

2 (2 )

c cY

l c

A A k k
p

D
t

k

D

D k



     


+  − +
=

+ +
 

Low-carbon 

promotion efforts 
2 2

0

( )
N c

r c

a k
r t

k B k



  


−
=

+
 

( )

( )2 2

0

( )
( )

2 (2 )

Y c l

l c

k a k v
r t

k D k

    

    


− + +
=

+ +
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Decision variables 

and perfSormance 

Without blockchain 

N Model 

With blockchain 

Y Model 

Return rate 2 2

0

( )
( )

N r

r c

aA k
t

k B k

  


  


− +
=

+
 

( )2

1

2

0

( )
2 (2 )

Y

l c
k

DA
t

k D


    


−
=

+ +
 

Low-carbon level 

2

2 2

0

( )
N c

r c

a k
e t

k B k



  


= −
+

 
( )

( )

2

0

2 2

0

( ) 2
( )

2 (2 )

Y c l

l c

k a k v vD
e t

k D k

    

    


+ −
=

− +

−

+
 

Profits 
( )

2 2 2

2

0

1

2 2

( )N c r

M

r c
B

Ba k k

k k

  


  

− +
=

+
 

( )

2 2

2
2 2

0

3

2

N c r

R

r c

a k Bk

k B k




  
=

+
 

( )( )

( )

2 2

0 1

2
2 2

2

2

0

( )

2 (2 )

c l r cY

M

ll c

k a k v D D k k

kk D k

D    


    

− + + +
= −

+ +
,

( )( )
( )

2

1 1

2
2

0

2

2 2

2

2 2 (2 )

c c cY

R

l c

k D D A k

k k

D k

D




     

− − +
=

+ +
,

2

2

Y

T

l
k


 =  

Consumer's surplus 
( )

2 2 2 2 2

2
2 2

0

( )

2

N c r

r c

a k k
CS

k B k

  

  

+
=

+
 

( )0

22

2
2 2 2

1

2 2 (2 )

Y c

l c

k
C

D
S

k D k     
=

+ +
 

Demand 2 2

0

( )N c r

r c

a k k
Q

k B k

  

  

− +
=

+
 

2

0

1

2

2 (2 )

Y c

l c

k
Q

D k

D

k     

−
=

+ +
 

To streamline the complexity of the formulas, we consolidate the common components of 

the expressions into the following parameters. Where, ( )2

0
( ) ( ) 2

r c
D k A A k  = + +  − ,

( ) 2

1
( )

l r
D a k v k    = + + , ( ) 2

2

2

l
D a k v   = + , 2 2

3
( ) (2 ( )( ) )

r
D k A     = + +  + + ,

2 2

4
2

( ( )(3 4 2 )
) 2 ( ) (2 (2 3 )( ) )

r

D A A
k A

        
       

= − + + +  +  −
+ + +  + +

( )2 2 2 4 4

5
2 ( ) (3 ) 4 ( )

r r
D k k           = + + − + − ,

2

6

2

2

( 2 ( )( )(2 ) )
( ) (14 ( )( ) 3 )

r

D A
k A

       
      

− +  + + − +
+ +

=
+  +

, ( )2 2 2 4 4

7
( ) (7 3 ) 12 ( )

r r
D k k           = + + − + − ,

( ) 3 3 2

8
( ) ( ) 2

c r c c
D k k A A k k       + − += − ,

2 2

9
2

( 2 ( )( )(2 )
) 4 ( ) (4 ( )( ) )

r

D A
k A

      
       

= − +  + + −
+ + +  + +

,

( )2 2 2 4 4

10
4 ( ) (2 ) 4 ( )

r r
D k k           = + + − + − . 

The aforementioned results can be derived by employing methods from differential game 

theory, optimal control theory, and backward induction. According to the retailer's Hamiltonian 

function, the Hessian matrix can be obtained as 
0

2 0
0 0

c

r

k A
A

k


 

− − 
 − −
 − 

, with the first-order condition 

being less than zero, the second-order condition being greater than zero, and the third-order 

condition being less than zero (as assumption 6). The Hessian matrix is negative definite, and 

the objective profit functional is a concave function of the decision variables. Equation of the 

retailer can reach a maximum value with respect to the decision variables. According to the 

first-order condition of maximizing the present value Hamiltonian function, 0
N

R

p

H
=


, 0

N

R
H




=


,

0
N

R

r

H
=


, the values of and can be obtained that 0( 2 )a w A p e  + − + =− ,

2
0

( ) 0
c

r

A a e p k
rk
  

 
+ −
−

=
=
− ; 

according to the sate equation, 
2 2
( ) ( )

N

R
H

t
e

t 


= −


g

, by the transversality condition 
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𝑙𝑖𝑚
𝑡→∞

𝜆2(𝑡)𝑒−𝜌𝑡 = 0 the decision variables of the supply chain members are of finite value, hence 

can be obtained 𝐶1 = 0; solving the differential equation can yield the shadow price of the state 

variables: 𝜆2(𝑡) =
𝜂(𝐴𝜏+𝑝−𝑤)

𝛿+𝜌
. Substituting the values of into the first-order conditions of 

equation of N

RH , solving the system of equations can yield: 𝑝(𝑡) =
𝐴2𝛽(𝑎+𝑒𝜂)−𝑘𝑐(𝑎+𝑒𝜂+𝛽𝑤)

𝛽(𝐴2𝛽−2𝑘𝑐)
, , 

( )2 2

( )( )
( ) , ( )

2 ( ) 2

c

c r c

k a e wA a e w
t r t

k A k A k

   


    

+ −+ −
= = −

− + −
and then substituting it into the manufacture’s 

Hamiltonian function, the manufacturer's reaction function can be obtained. The second 

derivative of the reaction function is 
2𝛽𝑘𝑐(𝐴𝛽(𝐴+𝛥)−2𝑘𝑐)

(𝐴2𝛽−2𝑘𝑐)2 , which is less than zero, and the equation 

can reach a maximum value with respect to the decision variables. According to the first-order 

condition of maximizing the present value Hamiltonian function: 
𝜕𝐻𝑀

𝑁

𝜕𝑤
= 0 , there is 

( )

( )

1
2 3 2

1

2
2

( 2 ) ( 2 ) 2 ( ) 2
2 ( 2 )

2

c

c

c

A k a A e A w A
k a e w A

A k

   
   



− +  − +  + +  −
+ + − +

−
; the sate equation is:𝜆1

𝑔

(𝑡) = 𝜌𝜆1(𝑡) −
𝜕𝐻𝑀

𝑁

𝜕𝑒
, by 

the transversality condition, 1lim ( ) 0t

t
t e  −

→
= ,the decision variables of the supply chain members 

are of finite value, hence can be obtained 2 0C = ; solving the differential equation can obtained 

( )
( )( )

( )

2

1 2
2

( 2 ( )) 2

2 ( ( )
( )

) 2( )

2

c c

c c

c

k A A w a e w wk

A k A A k

A k
t

   

      




−  + − −

+ − + + +

−
=

−
. Substituting the values of 𝜆1(𝑡) into the first-

order conditions, and then solving the equation can yield the  𝑤𝑁(𝑡) . Substituting it into 

𝑝(𝑡),𝜏(𝑡),𝑟(𝑡), can yield the retail price 𝑝𝑁(𝑡) , the recycling rate 𝜏𝑁(𝑡), and the efforts of low-

carbon publicity 𝑟𝑁(𝑡). Substituting 𝑟𝑁(𝑡) into state variable equation, and then solving the 

differential equation, can yield 𝑒𝑁. Substituting 𝑒𝑁 into 𝑤𝑁(𝑡), ( )Nr t , ( )Np t , ( )N t can yield the 

steady-state decision solution of Corollary 2. Substituting the steady-state solution into the 

demand and profit functions can yield the optimal demand and profit, and then substituting into

min

maxP

P

C QS dp=  can calculate the consumer surplus. 

The proof Proposition without blockchain process of Corollary 2 is the same as that of 

Corollary 1, using the backward solution method. When there is a blockchain technology 

service provider, first solve the decision variables, substitute them into the retailer's 

Hamiltonian function, then solve the retailer's decision variables, and finally obtain the 

manufacturer's decision variables. 
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3.2 Analysis 

3.2.1 Comparative analysis 

Corollary1: if
1 2

max{ , }   ：when
1 2

max{ , }a a a , N Y

w w
 
 , N Y

p p
 
 ；when

1 2
min{ , }a a a ,

N Y

w w
 
 , N Y

p p
 
 . Among

( )

3 22

1 32 2

2 ( ) 2

c

c r c

kA

A k k k A

  
 

     
= + +

− + −
,

( )2 2 3 3

2

( )

( )

r

c r

A k

k k

      


   

+ −
= +

+
,

( )

( )( )

2 2 3

4 5 3

1 2 2 2 2

8

( 2 )

( ) 2

c r c

l r c

v A k k D k D A A D
a

k A k k A D

   

     

+ − + 
=

+ − +
,

( )
( )( )

2 2 3

3

2

6 7

2 2

2 ( )

( ) ( )

c r c

c l r c r

v A k k k A A D
a

A

D D

k k k k k

   

         

+ − + 
=

− + − +
. 

When consumers’ low-carbon awareness is strong (
1 2

max{ , }   ) and the market size is 

sufficiently large (
1 2

max{ , }a a a ), the product price under blockchain adoption becomes lower 

than that without blockchain integration. In such scenario, the manufacturer and retailer 

strategically reduce price to attract environmentally conscious consumers, thereby capturing 

higher market share and profit. This indicates that blockchain adoption grants manufacturer 

greater pricing flexibility to leverage consumers’ sustainability preferences. Conversely, in 

markets with relatively small size (
1 2

min{ , }a a a ), blockchain implementation imposes 

additional operational costs (e.g., service fees, technology integration expenses) on the 

manufacturer. To offset the cost, the manufacturer is compelled to raise product whole price, 

which may reduce demand and offset potential sustainability gains. 

3.2.2 Sensitive analysis 

Corollary2: if
3

  ,when
3 4

max{ , }a a a , N Y

e e , N Y

Q Q , N Y

  , N Y

r r 。 Among,

3

r r

c

A k A k

k

 




+
= ,

( )
( )

9

2 2 3

3

3 2 3 2

10
2 ( )

( )

c r c

c l c r

v A k k k A A D
a

D D

k k k A k

   

     

+ − + 
=

− +
,

( )
( )

2

4

0

2

2 2

( )

( )

r c

l r c

v k k
a

k A

B

k k

     

     

+ − −
=

+ −
. 

When consumers exhibit strong low-carbon awareness (
3

  ) and the market size is 

sufficiently large (
3 4

max{ , }a a a ), the adoption of blockchain technology leads to higher low-

carbon levels, increased retailer investments in low-carbon promotional efforts, improved 

recycling rate, and greater market demand compared to scenario without blockchain integration. 

Blockchain technology enhances low-carbon performance throughout the product lifecycle, 

fostering trust among environmentally conscious consumers and driving demand growth. This 

incentivizes the retailer to intensify their low-carbon promotional and recycling effort, thereby 

further elevating recycling efficiency and boosting both sales revenue and recycling profits. 

Corollary 3: 
𝜕𝑤𝑖

𝜕𝜂
> 0,

𝜕𝑝𝑖

𝜕𝜂
> 0,

𝜕𝑟𝑖

𝜕𝜂
> 0,

𝜕𝜏𝑖

𝜕𝜂
> 0,

𝜕𝑒𝑖

𝜕𝜂
> 0,

𝜕𝑄𝑖

𝜕𝜂
> 0,

𝜕𝜋𝑀
𝑖

𝜕𝜂
> 0,

𝜕𝜋𝑅
𝑖

𝜕𝜂
> 0,

𝜕𝜋𝑇
𝑖

𝜕𝜂
= 0. 
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Under both scenarios, the decision variables of the manufacturers and retailer, the state 

variable of the supply chain system, and market demand are positively correlated with consumer 

low-carbon awareness. As consumers’ low-carbon awareness strengthens, market demand 

increases. The manufacturer, anticipating that consumers are willing to pay a premium for low-

carbon products, raise wholesale price to secure profits, particularly when blockchain 

integration incurs additional operational costs. To align with consumers preferences, the retailer 

intensify low-carbon promotional efforts and adjust retail price, thereby elevating the low-

carbon emission reduction level. Concurrently, heightened consumer low-carbon awareness 

amplifies market demand, incentivizing the retailer to enhance return rate to capture greater 

recycling revenues, which further drives improvements in recycling efficiency. The profits of 

both the manufacturer and retailer increase with heightened consumers’ low-carbon awareness. 

As previously established, stronger consumers’ low-carbon awareness drives higher market 

demand, enabling supply chain members to optimize pricing strategies (e.g., wholesale price, 

retail price) and capitalize on CLSC efficiencies, thereby achieving greater profitability. In 

contrast, the profits of the blockchain technology service provider depend solely on delivering 

technical solutions (e.g., the traceability system, data integrity protocols) to the manufacturer, 

with no direct linkage to consumer low-carbon awareness. Consequently, regardless of 

consumers' awareness of low-carbon living, it will not have no significant influence on the 

blockchain technology service provider. 
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Under the scenario with blockchain technology adoption, the decision variables, state 

variable of in supply chain, market demand, and profits are all positively correlated with the 

commission rate paid by the manufacturer to the blockchain service provider. An increase in 

incentivizes the blockchain service provider to enhance its technical efforts, thereby elevating 

the low-carbon level and strengthening environmentally conscious consumers’ trust in product 

sustainability. This heightened trust drives an increase in market demand. The surge in demand 

motivates the retailer to intensify low-carbon promotional efforts, while recyclers amplify 

recycling efforts to capitalize on higher recycling revenues, leading to a corresponding rise in 

return rates. 

Although blockchain adoption increases operational costs for both the manufacturer and 

retailer, these costs are offset through strategic price adjustments: the manufacturer raises the 
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wholesale price, and the retailer elevates the retail price, thereby maximizing their respective 

profits. Consequently, the profits of all supply chain members increase with higher commission 

rates. Counterintuitively, the manufacturer’s profit does not diminish despite the increased 

commission payments to the third-party service provider. 

Corollary 5: 0
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When the blockchain technology costs coefficient is high, the revenue of the blockchain 

service provider decreases, resulting in lower profits and consequently diminished 

technological investment efforts. Which leads to a lower low-carbon level, as governed by the 

dynamic equation, and also weakens market demand, prompting the manufacturer and retailer 

to lower product prices to stimulate demand and sustain profitability. 

However, consumers' strong low-carbon awareness implies that a decline in counteracts the 

demand-boosting effects of price reductions. Faced with shrinking profit margins, the retailer 

reduces investments in recycling efforts and low-carbon promotional efforts, further 

exacerbating the decline in and creating a negative feedback loop. The manufacturer, 

constrained by lower wholesale prices and reduced recycling efficiency, experience further 

profit erosion. 

Proof of Corollary 1: By taking the difference of the decision variables and combining the 

constraint conditions of Assumption 6, the results can be obtained. 

Proof of Corollary 2, 3, 4, and 5: By taking the derivative of the parameters and combining 

the constraint conditions of Assumption 6, the results can be obtained. 

4 Numerical Simulation 

Next, we will investigate and further validate the impacts of consumer’ low-carbon 

awareness, blockchain commission rate , service costs coefficient , the attenuation coefficient 

of the low-carbon level over time and discount rate on supply chain members’ profits under 

steady-state conditions of the dynamic control system across various scenarios. Additionally, 

we analyze the temporal evolution of the state variable and the effects of blockchain adoption 

on supply chain profitability and consumer surplus. This section employs numerical simulations 

for comparative analysis, with reference [10]. To ensure non-negativity of decision variables, 

the state variable, and demand, the parameter settings are specified as follows:𝑎 = 5, 𝐴 = 1 , 
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𝛽 = 0.5  , 𝜂 = 0.8  , 𝛿 = 0.2  , 𝛥 = 2  ,  𝜅 = 0.3  , 𝜌 = 0.2  , 𝑣 = 0.3 , 𝜍 = 0.2 , 𝑘𝑐 = 3  , 𝑘𝑙 =

2 ,𝑘𝑟 = 2. 

 

Figure 1. The effect of 𝜂 on profit 

Fig 1, the profit of supply chain members shown growth trend under blockchain adoption 

becomes more pronounced as consumer low-carbon awareness intensifies, with significantly 

higher profitability observed compared to scenario without blockchain integration. In both 

cases, the profits of the manufacturer and the retailer are consistently greater when blockchain 

technology is implemented. These findings align with the Corollaries 1,2,3, which posit that 

blockchain-driven transparency and traceability amplify consumer trust in low-carbon 

statements, thereby can enhance demand elasticity and enabling strategic price adjustments to 

capture sustainability premiums. 

 

Figure 2. The effect of 𝜅 on profit 
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Fig. 2, it can be concluded that an increasing profits of the manufacturer, the retailer, and the 

blockchain technology service provider with the commission rate, and that a rising commission 

rate does not result in a reduction in the profits of manufacturers or the supply chain system. 

This finding is consistent with Corollary 4. 

 

Figure 3. The effect of 𝑘𝑙 and on profit 

Fig. 3 indicates that as the costs coefficient for blockchain technology services increases, the 

profits of supply chain members decrease. This outcome is in line with Corollary 5. 

 

 Figure 4. The effect of   and on profit 

Fig. 4 shows that when the decay coefficient of the low-carbon level increases, profits exhibit 

a hump-shaped response—rising at low decay rates but falling once the decay becomes 

sufficiently large. A small decay coefficient implies that once achieved, a higher low-carbon 

level is sustained for longer, allowing firms to capitalize on enhanced reputation and consumer 

willingness to pay; consequently, product prices can be raised, market demand remains robust, 

and investments in recycling and carbon-promotion efforts yield positive returns, driving profits 
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upward. However, as the decay coefficient grows, the persistence of any low-carbon 

improvements diminishes rapidly, eroding the benefits of upfront investments. Firms 

consequently scale back recycling efforts and carbon-reduction promotions, and to offset their 

shrinking future gains, they still raise prices—only to face a contraction in demand. The 

combined effect of weakened low-carbon persistence, reduced promotional and recycling 

activities, and suppressed consumer response ultimately leads to a drop in profits once the decay 

coefficient crosses a critical threshold. 

 

Figure 5. The effect of   and on profit 

Fig. 5 illustrates that an increase in the discount rate reduces the profits of the supply chain 

members. The discount rate reflects the extent to which decision-makers value future returns. 

As the discount rate rises, the present value of future earnings declines, prompting firms to 

prioritize short-term gains while underestimating the benefits of long-term investments. Under 

these conditions, the manufacturer and the retailer tend to curtail efforts in low-carbon 

promotion and product recycling, resulting in lower recycling rates and diminished 

carbon-reduction initiatives. Meanwhile, to preserve short-term profitability or offset rising 

costs, they may opt to raise product prices. However, higher prices suppress consumer demand 

and lead to reduced overall sales. The combined effects of reduced low-carbon investment, 

contracting market demand, and weakened consumer response ultimately lower profit levels 

throughout the supply chain. Consequently, a higher discount rate not only erodes the incentive 

for firms to pursue low-carbon transformation but also impedes the attainment of sustainable 

development objectives within the supply chain. 

Besides, from Figures 4 and 5, it can also be observed that comparing the scenarios with and 

without blockchain adoption, the manufacturer and the retailer achieve higher profits when 
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blockchain technology is implemented., the profits of the manufacturer and the retailer are 

consistently greater when blockchain technology is implemented. 

 

Figure 6. The trajectory of the change in low-carbon levels over time 

Fig. 6 demonstrates that over time, the level of low-carbon emission reduction steadily 

improves, suggesting that the efforts of supply chain members coupled with technological 

advancements are driving the achievement of environmental protection goals. Moreover, the 

presence of blockchain technology yields a higher low-carbon level compared to scenario 

without blockchain. Thus, embedding blockchain technology not only facilitates the attainment 

of more ambitious low-carbon targets but also constitutes an important technological measure 

for realizing sustainable development and environmental protection. 

 

Figure 7. The effect of   on consumer’ surplus 
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Fig. 7 reveals that as consumers’ awareness of low-carbon issues increases, consumer surplus 

also rises, and it is higher when blockchain technology is applied. The low-carbon level 

increases over time and eventually stabilizes, resulting from increased investments by supply 

chain members and the willingness of low-carbon-conscious consumers to pay premium prices. 

Furthermore, the integration of blockchain technology effectively reduces the carbon footprint, 

thereby enhancing consumer surplus. 

5 Conclusion 

This study moves beyond the static research framework of forward supply chain by 

constructing a CLSC dynamic differential game model, thereby revealing the impact of the 

interaction between low-carbon awareness and market size on the profit transmission 

mechanism. In an innovative extension, blockchain technology is applied not only in brand 

goodwill management but also in full-cycle carbon footprint monitoring, leading to the 

development of a three-dimensional evaluation system based on “transparency-efficiency-

emission reduction.” The research conclusions are as follows: 

(1) When the market scale is large and consumers exhibit strong low-carbon awareness, 

blockchain technology can reduce product prices while enhancing low-carbon levels, consumer 

surplus, and recycling rates. The profits of supply chain members may increase by 15% to 25%, 

offering a quantifiable implementation pathway toward achieving the “dual-carbon” goals. The 

technological transparency triggers a “low-carbon premium” effect, accelerating the attainment 

of a stable low-carbon level in carbon footprint monitoring. 

(2) In scenarios where the technology investment costs coefficient of the blockchain service 

provider is high and consumers have strong low-carbon awareness, reducing technological 

effort will result in decreased profits for supply chain members. 

(3) The level of low-carbon operation rises over time and eventually stabilizes; additionally, 

when blockchain technology is integrated, the low-carbon level is higher. 

(4) As the discount rate increases, the present value of future returns declines, weakening the 

incentive for firms to invest in low‑carbon promotion and recycling. To sustain short‑term 

profitability, companies tend to raise product prices, which in turn suppress market demand. 

The combined effect of reduced low‑carbon investment and diminished demand ultimately 

leads to a decline in supply‑chain member profits. 

(5) The decay coefficient of the low‑carbon level exhibits an inverted‑U effect on profits. At 

low decay rates, carbon‑reduction benefits are sustained over time, enhancing consumers’ 



Mao Luo 

99 

willingness to pay premiums and improving recycling efficiency, which drives profit growth. 

As the decay coefficient increases, however, these benefits dissipate more rapidly, prompting 

firms to cut back on related investments and raise prices to offset losses—thereby contracting 

demand and recycling rates, and causing profits to fall. Notably, although profits continue to 

decrease at higher decay rates, the rate of decline diminishes as the decay coefficient becomes 

very large. 

Overall, under the dual-carbon framework, the manufacturer should comprehensively 

evaluate the cost-effectiveness of blockchain technology and the level of consumer low-carbon 

awareness when deciding whether to implement blockchain-enabled full-cycle management. 

This integrated strategy can effectively balance technological innovation with cost control, 

thereby facilitating the green and low-carbon transformation of the supply chain and supporting 

the achievement of dual-carbon objectives. Based on the findings of this study, a key managerial 

implication is that the retailer should share a portion of the blockchain implementation costs 

initially borne by the manufacturer. Such a cost-sharing arrangement not only distributes the 

financial burden more equitably but also enhances joint investment in digital infrastructure, 

improves supply chain transparency and carbon traceability, and fosters coordinated low-

carbon governance—ultimately contributing to improved overall supply chain performance and 

sustainability. 
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