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Heterogeneous Dual-Core Intelligent Control Technology
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Department of Intelligent Manufacturing Engineering, Chengdu College of University of Electronic
Science and Technology of China, Sichuan, Chengdu, 611731, China

Abstract. With the deepening trend of societal aging,
Received: December 26, 2025 the demand for mobile robots in scenarios such as
Revised: January 6, 2026 elderly assistance, disability aid, logistics, and rescue is
growing. Navigating stairs in complex, unstructured
Accepted:January, 2026 environments has become a key challenge in robotics.
Published online: January, 2026 Traditional wheeled, tracked, or legged robots suffer
from weak adaptability, insufficient stability, or high

To appear in: International cost. This paper designs an adaptive stair-climbing

2;’::{5;({ rid‘{?:fezd ﬁ{) 5 robot utilizing a heterogeneous dual-core control
(February 20’2 6) ’ architecture built with an STM32H743 microcontroller

and a Raspberry Pi 4B. It integrates multiple sensors
* Corresponding Author: Jialing including an RGB-D camera, an Inertial Measurement
Tang (2025424068@qq.com) Unit (IMU), and encoders. The Raspberry Pi 4B serves

as the upper-layer intelligent decision-making core,
performing planning and decision-making through
fuzzy logic and Model Predictive Control (MPC). The
STM32H743 acts as the lower-layer real-time control
core, achieving precise execution via PID control. The
robot can adapt to stairs with slopes of 30°—45° and step
heights of 150-200 mm made of different materials,
maintaining a stability margin of no less than 20 mm
during climbing. Compared to traditional tracked
robots, the stability margin is improved by over 35%.
The robot demonstrates good stability and robustness in
various stair environments, providing an innovative
technical approach for mobile robots in complex
terrains.

Keywords: Adaptive Stair-climbing Robot; Heterogene
ous Dual-core Control; Multi-Sensor Fusion,; PID Con
trol

1. Introduction
To address stair terrain, related research domestically and internationally has primarily
focused on three categories of robots: wheeled, tracked, and legged. Wheeled mechanisms offer

high efficiency but poor obstacle-crossing capability. Tracked mechanisms improve possibility
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to some extent but often lack stability during stair ascent, being prone to posture instability.
Legged robots have the best environmental adaptability but are limited by complex control logic
and high manufacturing costs [1]. The core performance differences among different types of
mobile mechanisms are shown in Table 1. In recent years, the use of hybrid mobile mechanisms
has become a research focus for such compromise solutions [3]. Although existing hybrid
mechanisms balance movement efficiency and obstacle-crossing ability, most rely on pre-
programmed gaits. In unknown stair environments, they exhibit algorithmic lag in dynamic
center-of-gravity adjustment, with response delays commonly exceeding 80 ms. In contrast, a
heterogeneous dual-core architecture can compress decision-making delays to within 50 ms.
The multi-wheel-group mechanism combines the efficiency of wheeled systems with the
obstacle-crossing capability of tracked systems, allowing flexible switching between wheeled

and tracked modes, providing a solid mechanical foundation for adapting to stair terrain.

Most existing research focuses on mechanical structure improvements or relies on fixed gaits
preset with stair parameters. When dealing with unknown or variable-parameter stair
environments, the "perception-decision-adaptation" intelligent control capability of such
solutions remains insufficient. Embedding an intelligent system into a multi-wheel-group
mobile platform to endow it with autonomous adaptation capability is key to solving the

problem.

Table 1. Performance comparison of different mobile mechanisms for stair climbing.

. . Movement Obstacle-Crossing Stair-Climbing
Mobile Mechanism Type Efficiency Capability Stability
Wheeled Mechanism High Weak Poor.(Pr.one to
Slipping)
Tracked Mechanism Medium Medium Fairly Poor.(.Prone to
Instability)
Legged Mechanism Low Strong Good
Hybrid Mechanism Medium Medium Average
Adaptive Multl-Wheel-Group Medium-High Strong Excellent
Mechanism

This paper proposes an innovative "heterogeneous dual-core intelligent control + multi-
sensor fusion" solution, developing an adaptive stair-climbing robot. The heterogeneous dual-
core architecture balances real-time control and intelligent decision-making. The upper layer
uses a fuzzy control algorithm, which does not rely on an accurate mathematical model, to
achieve dynamic decision-making. The lower layer uses PID control for accurate execution.
The aim is to endow the robot with autonomous adaptation capability in unknown stair
environments, overcoming the limitations of traditional solutions, and providing a new

approach for autonomous robot navigation in unstructured environments.
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2. Overall Design of the Adaptive Stair-Climbing Robot

The adaptive stair-climbing robot system is a complex system integrating mechanics,
electronics, control, and information processing. Its overall design follows the principles of
modularity, intelligence, and high reliability. The entire system consists of three core modules:
the mechanical body module, the sensing and actuation module, and the heterogeneous dual-
core intelligent control module. The overall framework diagram is shown in Figure 1,

illustrating the information and control flow from environmental perception to motion

execution.
4 Mechanical Body Module ) flntelligent Control Modulew
Control center equipped
with two core processors
Dual-processor
/ Control Center
X / Closed-lA
Yomrol
4 N / [Path Planning Unit] [Inertial Testing Unit]
Inertial Testing Unit
Sensor H Gyroscope H Force Sensor
-
Infrared Sensor]—-[ Gyroscopej—{ Drive Motor " Control Unit
Drive Motor HStepper Motor H Integration Unit
\_ Sensing and Drive Module J \ W,

Figure 1. Overall system framework diagram.

2.1. Mechanical Body Module

The mechanical body is the physical carrier of the robot, as shown in Figure 2.

Figure 2. Rendering of the adaptive stair-climbing robot.
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It adopts a multi-wheel-group mobile mechanism that combines the efficiency of wheeled
systems with the obstacle-crossing ability of tracked systems. The mechanism consists of 4
symmetrically distributed wheel groups. Each wheel group integrates a driving wheel, auxiliary
support wheels, and an elastic tensioning component. Based on feedback from step contact, it
can automatically adjust the support angle and tension of the wheel groups, ensuring multiple
support points provide stable support force during climbing. This retains the high movement
efficiency of wheeled mechanisms while possessing the strong obstacle-crossing capability of

tracked mechanisms, effectively preventing tipping over [4].

2.2. Sensing and Actuation Module

The sensing and actuation module is the "nerves" and "muscles" for the robot to perceive the
environment and execute actions. It includes a depth vision sensor (e.g., RGB-D camera) for
detecting the distance, angle, and step height of stairs ahead; an Inertial Measurement Unit
(IMU) for measuring changes in the robot's own posture; encoders for feeding back the actual
positions of joints; and DC servo motors or steering gears as power outputs. The core perception
task, undertaken by the RGB-D camera for stair environment detection, requires accurate
identification and parameter extraction of stair targets. The complete logical flow for stair target
detection is shown in Figure 3. This process takes color images and depth point cloud data as
input, achieves stair contour segmentation and key parameter fitting through multi-stage
processing, and obtains reliable environmental perception data. Based on this, the robot makes

adaptive stair-climbing decisions [5].

RGB _111_1§ge Depth Point (;loud PointNet Pomt.Cloud Stair Edge Extraction
Acquisition Preprocessing Segmentation

End Environment Model OutputHStair Parameter Fitting

Figure 3. Flowchart of stair target detection.

2.3. Heterogeneous Dual-Core Intelligent Control Module

The heterogeneous dual-core intelligent control module is the intelligent core of the entire
robot, adopting a dual-processor structure with different architectures. The implementation
flow is shown in Figure 4. The STM32H743 microcontroller serves as the real-time control

core, running the RT-Thread operating system. Its main functions are time-sensitive basic
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operations, millisecond-level motor servo control, and rapid collection and filtering of multi-
channel sensor signals. In contrast, the more powerful Raspberry Pi 4B, running the ROS
(Robot Operating System), handles computationally intensive intelligent decision-making tasks
such as environmental recognition, multi-sensor data fusion, and real-time motion planning.
The two cores communicate in real-time via a high-speed serial interface (UART), continuously
exchanging control commands and system states, forming a perfect closed-loop autonomous
control cycle from perception to decision-making and execution, endowing the robot with both

rapid reflex capability and complex reasoning ability.

RGB-D Camera
- MU Environment Motion Planning &
Perception Layer Encoder Modeling & Decision Making
—Multi-sensor Data Stair (Fuzzy Logic / MPC)
Fusion

) 4
PWM Signal PID Control Law Real-Time Intelligent
Generation Calculation Control Core Decision Core
\ 4

Execution M?tor DC Motor
Layer Driver

End

Robot Body

Stair
Environment

Figure 4. Flowchart of the heterogeneous dual-core intelligent control module.

3. Robot Mechanical Structure and Motion Mechanism

3.1. Adaptive Walking Mechanism

The multi-wheel-group mobile mechanism, which fuses wheeled efficiency and tracked
obstacle-crossing ability, is the foundation for realizing the robot's stable stair-climbing
function. This mechanism abandons the structural limitations of traditional single wheeled or
tracked designs. It employs 4 independently driven wheel group units arranged in a rectangular
array on both sides of the body. Each wheel group unit includes an 80 mm diameter
polyurethane driving wheel, auxiliary support wheels, and an elastic tensioning link rod with a
stroke of 0-120 mm. A torque sensor (model: TJH-803) at the wheel group pivot triggers wheel

group posture adjustment.

When a wheel group contacts the vertical face of a step and the pressure exceeds a set

threshold of 5 N, the equivalent motor (JGA25-370) activates, actively lifting the wheel group
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to form a stable temporary auxiliary support point. The other wheels continue moving smoothly
to push the body forward. After the wheel group completely crosses the vertical face and lands
on the step tread, the tensioning link automatically resets. Through this physical interaction-
based feedback and independent switching, the robot achieves dynamic adaptation. Without
relying on complex external sensor systems, it balances the efficiency of wheeled mechanisms
and the multi-support-point obstacle-crossing capability of tracked systems through natural
interaction between wheel groups and steps, demonstrating flexibility in adapting to steps of

varying heights and slopes.

3.2. Kinematics and Stability Analysis
To quantitatively analyze the robot's motion, a simplified kinematic model was established.

Let the projection of the robot's center of gravity on the horizontal plane be G (x4,y,), and the

contact points of each wheel group with the ground be P;(x;,y;), i = 1,2,3,4. During stair
climbing, the robot's static stability margin SM can be defined as the minimum value of the

shortest distances from the center of gravity G to each side of the current support polygon.
SM = imindistance(G, edge i(Polygon))

The robot is statically stable only when SM > 0. In dynamic processes, dynamic stability
must be evaluated by calculating the Zero Moment Point (ZMP) or the rate of tilt angle change,
combined with IMU data. The wheel group alternating support strategy designed in this paper
aims to actively maintain a large support polygon, keeping SM above a safe threshold

throughout the climbing process.

To achieve precise tracking of the preset trajectory and accurate control of the motor driving
torque, it is necessary to establish the system's kinematic and dynamic models. In kinematics,
the D-H parameter method is used to establish coordinate systems, with the base at the body
center and links at each wheel group joint. Deriving the forward kinematics equation relates
joint variables such as wheel group speed and tensioning angle to the robot's overall pose
(position, orientation), providing the basis for the inverse solution in multi-wheel-group
coordinated trajectory planning. In dynamics, a system dynamic model is constructed based on
the Lagrange equation, focusing on analyzing the force balance relationships during different
phases such as wheel group contact with steps and lifting for obstacle crossing. This includes
the robot's own gravity, inertial forces generated by motion, ground contact reaction forces, and
motor driving torques, estimating the peak torque requirements for each joint. This provides

theoretical support for motor selection and parameter tuning of the underlying PID controller.
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In actual control, simplified forms of these models are used for real-time prediction and

planning by the upper-layer Raspberry Pi decision core.

3.3. Obstacle-Crossing Stability and Posture Adjustment

During stair climbing, stability is the primary condition for ensuring task success and the
robot's own safety. The special stair environment causes the robot's center of gravity position
to continuously change with climbing height, which can easily lead to forward/backward or
lateral tipping. Therefore, obstacle-crossing stability analysis and active posture adjustment
strategies are key links in the overall design. The robot's posture adjustment strategy is shown
in Figure 5, achieving stable climbing by dynamically adjusting support point positions. The
robot's stability is quantitatively assessed by calculating the position of the center of gravity
within the support polygon; this assessment metric is the static stability margin. For dynamic
processes like climbing, professional concepts such as the Zero Moment Point (ZMP) must also
be considered [8]. The core feature of the adaptive walking mechanism designed in this paper
is multi-point alternating support, which actively maintains a large stable support area.
Cooperating with the heterogeneous dual-core control system, the intelligent decision core
solves relevant data in real-time, including body tilt angle and angular velocity information
from the IMU, and support leg position information from joint encoders. Based on this data, it
dynamically calculates the robot's real-time center of gravity and stability margin. The
Raspberry Pi 4B then generates motion trajectories and posture compensation commands
according to the calculation results and sends them to the real-time control core via the UART
asynchronous serial port. The real-time control core communicates with peripherals like the
IMU and encoders using the SPI interface, effectively ensuring high-speed acquisition of
underlying sensor data. The real-time control core utilizes its high timer resolution to execute
high-speed PID control algorithms, converting received commands into precise PWM driving

signals for each joint motor, ultimately achieving motion tracking and dynamic stability.

Center of gravity displacement /\h2 = XX
-mesh2 = Ah1) Stability margin > 20 mm

Figure 5. Posture adjustment strategy comparison diagram.
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4. Design of the Heterogeneous Dual-Core Intelligent Control
System

4.1. Heterogeneous Dual-Core Hardware Architecture and Task Allocation
The hardware architecture of the dual-core intelligent control system is the foundational
platform for achieving high-performance control. The specific hardware configuration, task

division, and key performance parameters are shown in Table 2.

Table 2. Hardware task division of the heterogeneous dual-core control system.

Core Type Processor Model Operating Response Time Interface Connected
System To
Real-Time STM32H743 (ARM RT-Thread Microsecond Motor drivers, joint
Control Core Cortex-M7) level (<10 ps) encoders, IMU
Intelligent Raspberry Pi 4B Linux + ROS Millisecond RGB-D camera, Real-
Decision Core  (ARM Cortex-A72) Noetic level (<50 ms) Time Control Core

This design adopts a heterogeneous dual-processor solution, with the real-time control core
focusing on "fast response and precise execution" and the intelligent decision core focusing on

"complex data processing and dynamic decision-making." Figure 6 visually presents the

RIS

collaborative hardware foundation of the heterogeneous dual cores.
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Figure 6. Hardware architecture and task allocation diagram.

The real-time control core uses an STM32H7 series microcontroller with an ARM Cortex-
M7 core. Its specific pin assignment and hardware connection design are shown in Figure 7. Its
maximum main frequency can reach 480 MHz, and it possesses abundant timer/PWM output

channels and nanosecond-level interrupt response capability, fully meeting the stringent "low
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latency, high precision" requirements of underlying control. The core connects directly to
hardware devices such as hub motor drivers, wheel pair encoders, and the IMU via high-speed
General Purpose Input/Output (GPIO) and Serial Peripheral Interface (SPI). It runs underlying
programs on the lightweight real-time operating system (RT-Thread) to receive speed/position
feedback signals from wheel pair encoders, complete the closed-loop PID control of hub motors
ensuring precise tracking of multi-wheel-group motion trajectories; and perform filtering
preprocessing on the raw three-axis acceleration and angular velocity data collected by the IMU
to reduce noise interference. It parses target posture commands and wheel group power
distribution commands issued by the intelligent decision core, converting them into specific

driving PWM signals to achieve coordinated motion control of each wheel group motor.

(T

W

" o

5 o T 1
] il G N iy

u
i
e

Figure 7. Hardware diagram of STM32H743 core pins.

The intelligent decision core is selected from the ARM Cortex-A series application
processors, specifically the Raspberry Pi 4B. Its quad-core Cortex-A72 processor offers strong
computing performance, capable of running the Linux operating system and ROS Noetic
(Robot Operating System) smoothly, providing hardware support for deploying complex
algorithms. The core is responsible for non-real-time but highly complex intelligent processing
tasks. It receives color images and depth data from the RGB-D camera via a USB 3.0 interface,
then fuses preprocessed IMU data and encoder feedback on actuator status information. Using
multi-sensor data fusion algorithms, it constructs a "robot-environment" combined state model.
The system can identify key environmental parameters such as stair slope, step height/depth,
generate adaptive multi-wheel-group coordinated motion trajectories for the current
environment, and immediately generate compensation commands if posture deviation risks are

detected, sending them to the real-time control core.

The two cores achieve bidirectional communication via a high-speed asynchronous serial
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port (UART) at a data transmission rate of 115200 bps. This communication method forms a
classic closed-loop solution for heterogeneous dual-core robots, enabling a 10 us state data
upload and a 50 ms command issuance response [4]. The real-time control core uploads state
information such as motor speed, body tilt angle, and trajectory position collected by sensors
every 10 ps, providing a dynamic data foundation for intelligent decision-making. The
intelligent decision core issues updated motion and posture correction commands every 50 ms,

which the real-time control core quickly responds to and executes.

This separation of responsibilities avoids potential performance conflicts between real-time
control and complex decision-making tasks within a single processor. Efficient communication
achieves overall coordinated control, providing stable hardware support for the robot's stair

climbing and environmental adaptation.

4.2. Sensor Data Fusion and Environmental Modeling

Accurate perception of the environment is a prerequisite for the robot's autonomous adaptive
climbing. The multi-modal sensors on the robot provide complementary environmental
information. The RGB-D camera acquires color images and depth information from the
environment in front of the robot [10]. With the help of point cloud processing algorithms, stair
surfaces can be segmented, and stair step heights and depths can be extracted to build a
geometric model of the stairs ahead. The IMU provides the robot's body three-axis acceleration
and three-axis angular velocity. Through attitude calculation algorithms (such as
complementary filtering or Kalman filtering), the robot's pitch and roll angles relative to the
direction of gravity can be estimated in real-time, which are key parameters for assessing body
posture stability. In complementary filtering, the low-pass filter cutoff frequency for IMU
accelerometer data is set to 5 Hz, and the high-pass filter cutoff frequency for gyroscope data
is set to 0.5 Hz. By fusing attitude data with a weighting coefficient k=0.98, noise interference
on tilt detection is effectively reduced. Joint encoders accurately feedback the rotation angle or
extension length of each adaptive leg. Combined with the robot's kinematic model, the pose of
the robot chassis relative to support points can be derived.

The data fusion center on the Raspberry Pi 4B (intelligent decision core) deeply fuses visual
data collected from the local RGB-D camera with the IMU attitude data and detailed encoder
information preprocessed and acquired in real-time by the real-time control core (STM32H743)
via the SPI bus [5], constructing an integrated robot-environment state model. The model

flowchart is shown in Figure 8.
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Figure 8. Flowchart of multi-sensor data fusion.

4.3. Adaptive Motion Planning and Stability Control Algorithm

Based on the integrated environmental state model, the core algorithms for adaptive motion
planning and stability control operate. Motion planning generates a reference path for safely
traversing all steps from the current position according to identified stair parameters (slope, step
height/depth) and the robot's kinetic constraints, planning differentiated motion sequences for
multiple wheel groups. As shown in Figure 9, to accurately convert the reference trajectory into

motor operation commands, the system adopts a dual closed-loop control strategy.

Image Featurck )
Deviation Au/Av Visual Control

Position Loop

Motor Position
Command

Control Period: 33ms Control Period: 20ms

Position Command Fuzzy Rule Base

Deviation

Drive Current
PID Parameter y —

Tuning Module

Control Period: 33ms Feedback Period: 5ms

-PID Speed Loop

Figure 9. Flowchart of the dual closed-loop control.

The trajectory planner determines the movement path (position and orientation) of the robot
base and the motion sequence for adjusting each leg (when to lift, lower, and anticipate) based
on the area [11]. Because the stair environment may have uncertainties, the planner needs online
re-planning capability to cope with updated situations or emergencies. The stability control
algorithm works closely with the planner, operating as a supervisory and compensation layer.
It continuously monitors the real-time stability margin calculated from IMU data and the

kinematic model, specifically as shown in Figure 10. The logic between the upper and lower
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layers of the algorithm is annotated, indicating command interaction and compensation

mechanisms between the two layers, reflecting the layered collaboration of the algorithm.
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Figure 10. Closed-loop diagram of adaptive motion planning and stability control algorithm.

4.4. Experimental Verification

To verify the performance of the adaptive stair-climbing robot designed in this paper in
complex stair environments, a multi-scenario test platform was built. Tests selected common
stair types in civil buildings and simulated extreme scenarios such as wet, slippery, and irregular
steps. Test indicators included average climbing speed, stability margin, and continuous stair-
climbing success rate. Each group of tests was repeated 3 times, with the final result being the
average value. The selection of test scenarios referenced the application requirements for

elderly and disabled assistive robots. Specific test parameters and results are shown in Table 3.

In the standard stair scenario, the robot achieved a 100% success rate, maintaining a stability
margin above 20 mm. Through coordinated adjustment of multiple wheel groups, fluctuations
in body tilt angle were controlled within +3°, demonstrating good stability performance. In
complex scenarios such as irregular and slippery stairs, the robot's average ascent speed
decreased, but the stability margin still met safety requirements, with a continuous climbing
success rate of no less than 90%. Experimental results indicate that the mechanical structure
and heterogeneous dual-core intelligent control strategy designed in this paper can effectively
adapt to different types of stair environments, verifying the effectiveness and practicality of the

proposed solution.

Table 3. Stair-climbing performance test results.

12
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Step  Step Average Stability ~ Climbing
. . Surface Climbing .
Test Stair Type  Height  Slope . Margin Success Rate
(mm) © Material Speed (mm) (%)
(m/s) 0
Residential
Standard Stairs 150 30 Concrete 0.22 28 100
Public Building Ceramic
Wide Stairs 180 33 Tile 0.18 2 100
Worn Irregular 160
Stairs (15) 32 Marble 0.15 22 97
Simulated Floor
Slippery Stairs 170 38 Tile 0.13 20 93

5. Conclusion

This paper presents an adaptive stair-climbing robot based on heterogeneous dual-core
intelligent control technology. It integrates a multi-wheel-group mechanical structure
combining wheeled efficiency and tracked obstacle-crossing ability with a layered control
system, addressing the pain point of poor adaptability of traditional robots in complex stair
environments. The dual-core architecture balances real-time control and intelligent decision-
making, ensuring environmental perception accuracy. Experiments have verified the stability
and practicality of the solution, providing an innovative solution for the development of mobile

robots in complex terrains.
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1. Introduction

Intelligent cockpits are evolving from the traditional "command-execution" mode to the
"proactive - empathetic" intelligent companion mode. The ideal in-car assistant not only needs
to understand the current driving instructions (such as "turn on the air conditioner"), but also
needs to have the ability of Long-Term Memory that spans time periods. For instance, when a
user sets the air conditioner to 26°C several times in a row during winter, the system should
automatically recommend this temperature in the following winter and "forget" this setting in

summer. This long-term personalized service based on historical interaction is at the core of
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enhancing user stickiness and in-cabin experience [1].

At present, memory enhancement schemes based on large language models (LLMS) mainly
face two major challenges. The first is the vector memory dilation and retrieval noise
phenomenon. Methods represented by MemoryBank convert historical dialogues into vector
storage [2]. With the increase of usage time, the scale of the vector library grows exponentially,
which not only leads to an increase in retrieval Latency, but also introduces a large amount of
irrelevant historical noise, occupies the limited Context Window of the LLM, and even triggers
"hallucinations". Secondly, there is the rigidity of static knowledge graphs. Although
knowledge graphs (KGS) can provide structured fact storage, traditional KGS are static. Users'
preferences are dynamic and fluid (for instance, a user might shift from preferring "rock" to
"light music"). Static KG has difficulty eliminating outdated information through the

"forgetting" mechanism, leading to recommendation conflicts.

In response to the above issues, inspired by cognitive psychology, this paper proposes the
EchoKG framework. The main contribution is that the Ebbinghaus Forgetting Curve [3] was
introduced into the memory management of the vehicle dialogue system for the first time, and
the anthropomorification attenuation and enhancement of machine memory were achieved
through mathematical modeling. A complete dynamic graph update and pruning algorithm for
EchoKG was proposed. The graph structure was dynamically adjusted through memory

Strength and Rehearsal, significantly reducing the context load while ensuring personalization.

2. Related Work

Early long-term memory methods mainly relied on rule-based Slot Filling, storing and
retrieving key information through predefined structured fields. However, this method has
obvious limitations in terms of expressive power and generalization. With the rise of the
Transformer architecture, the memory mechanism based on vector retrieval Augmented
Generation (RAG) has gradually become mainstream. By storing historical dialogue summaries
in vector databases and retrieving them based on semantic similarity, more flexible long-term

dependency modeling has been achieved [4].

However, methods such as Memory Bank will lead to a decline in index efficiency over long-
term operation due to the continuous accumulation of data volume, affecting the system
response speed and quality. Works such as LongMem and LangMem have attempted to
alleviate the problem of context redundancy through hierarchical storage and priority strategies

[5], but they are still insufficient when dealing with changes in user preferences over time or
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even instruction conflicts (such as users modifying previously given preferences).

Meanwhile, knowledge graphs have long been used to enhance the knowledge understanding
of dialogue systems due to their structured expression and explicit reasoning capabilities. For
example, K-BERT significantly improved the accuracy of domain knowledge question
answering by injecting knowledge graph triples into the input layer [6]. However, the existing
work generally focuses on general encyclopedic Knowledge (World Knowledge), and there is
still a lack of systematic research on how to construct and maintain user profile graphs that can
be continuously updated over time and reflect users' dynamic preferences, especially in highly

personalized continuous interaction scenarios such as vehicles, where there is even a blank.

Furthermore, the exponential decay law of memory over time revealed by the Ebbinghaus
forgetting curve has been used in recommendation systems to simulate user interest drift and
has also been widely applied in the Spaced Repetition algorithm in educational software [7].
However, in the field of dialogue management of large models, there are no mature methods
for applying it to dynamic memory pruning or priority reorganization yet. In conclusion, there
is still much room for exploration in how to effectively integrate long-term memory, knowledge
graphs, and human memory patterns to construct sustainable and evolving user-level dialogue

memory [8,9].

3. EchoKG frame

The overall architecture of EchoKG is shown in Figure 1 (a sketch, only describing the logic),
and the system as a whole is composed of three closely collaborating modules. Firstly, the
memory encoder and writer is responsible for parsing the natural language input into a
structured "entity-relations-attribute" triplet and initializing the memory strength for the newly
written preference information, providing a basis for subsequent dynamic evolution. Secondly,
the Dynamic KG Core is implemented based on Neo4;j. It maintains preference nodes with
attributes such as timestamps, access frequencies, and creation times, and performs
reinforcement and forgetting operations on the graph based on users' interaction behaviors,
enabling it to reflect the long-term trends and immediate changes of users' preferences. Finally,
the memory retrieval and enhancement generator retrives several most relevant subgraphs from
the graph in the dialogue based on the current query, linearizes them and injects them into the

language model to construct context inputs with more personalized user characteristics.

In terms of user preference modeling, we have constructed a dynamic preference knowledge

graph G = (E, R, P) , which includes a set of preference entities, a set of semantic relations,
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and a set of dynamic attributes. For any preference node, we maintain its key attributes such as
memory strength s, last access time t;,q, recurrence times n, and creation time. Take

temperature preference as an example. A typical preference record can be expressed as:

< Useryyy, PREFERS;EMP, 24C, {S, 1, tigst tereate} >

8 ® &= e —— .
= L Core of Dynamic Memory retrieval and
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Figure 1:EchoKG framework Architecture diagram

The dynamic attributes among them are used to continuously describe the evolution state of
preferences during the system's operation. When a user frequently mentions a certain preference,
its memory strength will be enhanced, while when the preference remains inactive for a long

time, it will naturally decline over time.

To simulate the forgetting mechanism of human memory, we combine the core idea of the
Ebbinghaus forgetting curve and conduct a discrete modeling of it to adapt to the intermittent
interaction mode in vehicle-mounted scenarios. In EchoKG, the temporal evolution of memory
intensity depends on two key factors: one is the user's "review" behavior (i.e., the recurrence of
preferences), and the other is the time interval since the last activation. Based on this, we update

the memory intensity in the following form:

S(t) = f(n) - g(At)

Here, f(n) represents the enhancement effect that occurs with the increase in the number of
reproductions, showing a marginal diminishing characteristic; And g(At) depicts the
exponential decay process of memory over time. To provide a more explicit modeling form, we
parameterized it in the experiment, making the memory attenuation more in line with the usage

frequency and interest change patterns of real users:
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S(t) = So(1 +n)*e P4
Here, S, represents the initial intensity, o controls the strengthening rate, and f describes the
attenuation rate. In this way, the system can automatically achieve the effect of "retaining

important preferences for a long time and gradually fading outdated preferences" in long-term

interaction.

Overall, EchoKG effectively combines structured preference modeling, dynamic graph
updates mechanisms, and human memory patterns, enabling the system to maintain
personalized consistency while flexibly adapting to the natural changes in user interests. As a
result, it demonstrates higher stability and intelligence in long-term interaction scenarios such

as in-vehicle conversations.

The retrieval module uses Cypher query statements to obtain nodes with S > 1.0 and the Top
-10 semantic similarity. The retrieved subgraphs are linearized into natural language prompt
words. For example: Prompt: "User historical preference memory: [Air Conditioning
temperature: 24 degrees (Strong preference)], [Frequently Heard singer: Eason Chan (Medium

preference)]. Please reply to the user based on this".

4. Experiments

4.1. Dataset Construction

To address the long-standing problem of scarce public data in the field of in-vehicle dialogue,
we have built and open-sourced the EchoCar-Public dataset. Based on the systematic cleaning,
integration and reconstruction of the existing multi-round dialogue resources, this dataset
generates supplementary long-term preference scenarios through a large model, and finally
forms a Chinese-English mixed dataset containing 15,800 rounds of dialogues. Among them,
the English part is mainly derived from typical task-oriented corpora covering transportation,
navigation and ancillary services such as MultiwOZ 2.4, SGD and KVRET [11-13]; The
Chinese part integrates Chinese MultiWOZ and CarChat-1K, and utilizes approximately 5% of
the large model to enhance the samples and expand the diversity of cross-round preference
expressions and temporal dependencies. To evaluate the adaptability and forgetting mechanism
of the model in long-term interaction, we deliberately injected preference conflict and
correction events spanning different time spans (such as Day 1, Day 7, Day 30) into the dialogue,

enabling the dataset to more comprehensively cover preference drift behavior in real scenarios.
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4.2. Experimental Setup

The experiment was carried out based on Qwen2-7B-Chat (4-bit quantization), and vector
retrieval memory banks, static knowledge graph structures, long-term memory compression
methods, and commercial closed-source memory mechanisms were selected as control schemes
to comprehensively investigate the differences in efficiency, accuracy, and stability of different
memory systems in vehicle scenarios. To achieve more identifiable comparisons, we
comprehensively measure system performance by using indicators such as intent recognition
F1, context length, personalized consistency, and response delay [14]. The degree of intent
recognition reflects the semantic understanding ability of the model. The length of the context
reflects the compression ability of different memory strategies on the input scale of LLMS.
Personalized consistency is used to verify whether the response aligns with the user's historical

preferences. Response delay measures the availability of a system in real-time interaction.

4.3. Main Results

The experimental results show that EchoKG demonstrates significant advantages in both
efficiency and long-term stability. In terms of context management, as the graph can compress
the original dialogue into discrete and structured preference nodes, the number of input tokens
generated by EchoKG is only about half of that of traditional vector retrieval schemes, thereby
significantly reducing the model inference cost and keeping the response delay at an acceptable
low level for in-vehicle interaction. In terms of semantic understanding, the dynamic forgetting
mechanism effectively eliminates outdated preferences, reduces noise interference, and makes
the intent recognition performance superior to that of static graphs. It is also worth noting that
in terms of the personalized consistency index evaluated manually, the performance of EchoKG
is close to that of commercial closed-source memory systems, indicating that the introduction
of a time decay mechanism helps the model form a preference retention behavior similar to

human "familiarity" in long-term interactions.

To further verify the long-term stability of the system, we constructed a 30-day simulated
interaction scenario. The results show that traditional static graphs will continuously
accumulate one-off preferences in the early stage, leading to structural redundancy. Over time,
EchoKG will gradually weaken the memory intensity of low-frequency preferences and
automatically perform pruning operations when the intensity drops below the threshold,
keeping the scale of the spectrum always within a controllable range and being able to
dynamically reflect the user's true long-term habits. This phenomenon verifies the rationality

of modeling based on the Ebbinghaus forgetting curve and also indicates that introducing
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psychological memory laws into the graph memory system has dual advantages in theory and

practice.
Table 1. The experimental results.
Method Intention F1  Token  Personalized consistency (1-5) MOS Delay (ms)
Vanilla Qwen2 0.796 1980 2.58 3.34 670
MemoryBank 0.837 2980 3.71 3.91 1280
Static KG 0.854 1820 4.05 4.12 710
EchoKG (Ours) 0.905 1340 4.73 4.79 780
GPT-40 Memory 0918 - 4.81 4.86 2200+

5. Discussion and Limitations

While introducing a forgetting mechanism to enhance system efficiency, the high safety
requirements of in-vehicle scenarios also impose additional constraints. For important
information related to driving safety or emergency response, such as users' preferences for
vehicle handling characteristics (such as brake sensitivity), emergency contacts, etc., their
semantic attributes have a high degree of safety sensitivity and thus should not be weakened
over time. Based on this, we designed and implemented the "Immortal Whitelist" mechanism
in EchoKG, forcibly setting the attenuation coefficient beta to 0 for all attributes marked as
Safety-Critical. Theoretically, it is necessary to ensure that such information has permanent

memory weights in the graph, thereby achieving the non-forgeability of security semantics.

On the other hand, the parameters alpha and beta in the forgetting curve have a decisive
influence on the memory evolution process, and the preference patterns of different user groups
may vary significantly in the time dimension. For instance, the preference switching frequency
of young users is usually higher, which implies that a larger attenuation coefficient beta may be
required in dynamic modeling. In contrast, elderly users with more stable preferences
correspond to a slower rate of memory decline. The above phenomena indicate that fixed
parameters are difficult to cover the heterogeneity of the real user group. Therefore, future work
will extend to the parameter adaptive method based on Meta-Learning [15], enabling the
forgetting model to continuously adjust according to the long-term behavioral characteristics of

users, thereby achieving more refined personalized memory management.

In addition, the current computing of EchoKG is mainly deployed at the edge nodes of the

vehicle to ensure that the inference delay meets the real-time requirements of in-vehicle
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interaction. However, the computing resources at the vehicle end are limited, while large-scale
graph construction, attribute clustering, and cross-user knowledge mining are more suitable to
be carried out in the cloud where resources are abundant. Therefore, we plan to further explore
the "vehicle-cloud Federation" collaborative architecture: completing high-complexity graph
enhancement and statistical modeling on the cloud side, and performing lightweight inference
and local storage of privacy-sensitive information on the vehicle side, thereby achieving cross-
terminal knowledge fusion and dynamic synchronization while ensuring user privacy and

system efficiency.

6. Conclusions

The EchoKG framework proposed in this paper innovatively utilizes the Ebbinghaus
forgetting curve to solve the problem of long-term memory management in in-vehicle dialogue
systems. Through mathematical modeling with dynamic weights, EchoKG significantly
reduces computing resource consumption and response delay while maintaining high-precision
personalized services. Experimental data show that this method has extremely high practical

value in real vehicle scenarios.
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1. Introduction

Abstract. Human balance is a skill gradually
established through a sensory-action-feedback loop,
relying on repetitive training, trial-and-error
mechanisms, and the dynamic plasticity of synaptic
connections. In this process, sensory signals are
continuously transmitted to the central nervous system,
where stable motor paths are formed through learning,
enabling action reuse without complex calculations.
Inspired by this mechanism, this paper proposes a
balance learning method based on brain-like spiking
neural networks and dopamine-modulated synaptic
plasticity for self-learning control of the classic inverted
pendulum system. The method connects the one-hot
encoded sensory neuron group with motor neurons and
utilizes a reward-driven synaptic weight update
mechanism to gradually master the stable control of the
inverted pendulum without the need for prior models or
training data. Unlike traditional control algorithms such
as PID or LQR, this approach features biological
realism, strong adaptability, and self-organizing
behavior, providing a new perspective on bio-inspired
learning strategies for artificial intelligence in
continuous control tasks.

Keywords: Spiking Neural Network; Dopamine-
modulated Synaptic Plasticity; Autonomous learning;
Reward

In traditional control engineering, control loops typically consist of several key modules: the
internal and external state perception modules, the control decision module, and the system
dynamic model module [1, 3]. The working principle of a controller is to predict the future
expected state based on the system's current state and the acquired environmental information,

and then generate control actions accordingly, ultimately driving the system to achieve the
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desired behavior. In terms of control methods, model-based control relies on accurate modeling
and simulation of the physical process to predict system behavior, while model-free control
does not require an explicit dynamic model [4, 14], instead optimizing the control strategy

through continuous interaction with the environment.

In recent years, machine learning techniques, particularly deep reinforcement learning (Deep
Reinforcement Learning, DRL), have been widely applied in control tasks such as industrial
process control, autonomous driving decision-making, and robotic operations, due to their
powerful ability to learn complex strategies in high-dimensional state spaces [7, 12]. However,
although traditional artificial neural networks (ANNs) mimic the connections of biological
neurons in structure, their computational units are essentially continuous numerical mappings.
This fundamentally differs from the time-dependent computational mechanisms that biological
neural systems rely on, which depend on spike transmission [13, 18-23]. To bridge this gap,
Spiking Neural Networks (SNNs), as the "third generation of neural networks," have been
proposed. SNNs use spike trains in the time domain to transmit information, more accurately
simulating the way signals are transmitted between biological neurons [9, 10]. The advantage
of SNNs lies not only in their ability to encode information in time, but also in their event-
driven sparse activation mechanism, which significantly improves energy efficiency, making

them more suitable for embedded control scenarios with limited resources.

To enable SNNs to learn effective control strategies, researchers have developed various
reward-modulated synaptic plasticity mechanisms. For example: R-STDP (Reward-modulated
STDP): Combines the spike-timing differences (STDP) of pre- and post-synaptic spikes with
external reward signals to achieve fine-tuning optimization of the strategy.RM-STDP: Builds
upon R-STDP by introducing a weight-dependent multiplicative modulation factor to enhance
the stability of the training process and the generalization ability of the strategy [9, 24-27].TD-
STDP: Introduces the temporal difference error from reinforcement learning into the synaptic

learning process and uses an eligibility trace mechanism to address the reward delay issue.

Although mechanisms such as R-STDP, DA-STDP, and TD-STDP have initially established
a connection between synaptic plasticity and environmental rewards, they still have limitations
in terms of biological realism, effective handling of delayed rewards, and adapting to dynamic
task feedback. R-STDP mainly controls and amplifies the synaptic update based on
instantaneous reward signals, making it difficult to effectively cope with situations where
reward signals are significantly delayed [16, 17]. The DA-STDP model only establishes a

weight update mechanism between pre- and post-synaptic spikes and fails to capture delayed
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rewards that appear several seconds after the behavior [28-32].

In contrast, DE-STDP (Dopamine-Eligibility STDP) shows greater potential in terms of
biological plausibility and mechanism consistency [8, 33]. This mechanism uses dopamine (DA)
concentration as a dynamic modulation factor and introduces the "eligibility trace" variable,
coupling the local plasticity of STDP with the global reward signal reflected by dopamine
concentration, giving synaptic weight changes "causal controllability" over time. This not only
naturally simulates the core function of dopamine in reward-driven learning in biological neural
systems, but also eliminates the need for external TD error calculation modules. The key feature
of DE-STDP lies in its temporally separated weight update mechanism: STDP determines the
possible direction of weight change based on spike timing differences (eligibility trace). The
reward gating is then executed, with dopamine signals deciding whether these preset changes
are actually implemented. This "trace-reward" pairing mechanism aligns with the time-scale
differences between plasticity events and reward signals in biological systems [11, 15]. This
two-stage regulation strategy makes DE-STDP advantageous in tasks involving sparse

reinforcement signals, significant reward delays, or the need for local plasticity adjustments.

Unlike current mainstream control methods based on reinforcement learning or deep neural
networks, this study emphasizes exploring the synaptic learning rules and biological
information processing mechanisms achievable by the nervous system itself, and focuses on the
possibility of efficient, unsupervised balance learning in low-dimensional state spaces. The
research not only validates the practical feasibility of DE-STDP in dynamic control tasks but
also provides theoretical foundations and potential technical pathways for promoting brain-like

computational paradigms in practical control systems.

2. Methodology

2.1 Network Structure

To achieve reinforcement learning control for the inverted pendulum system, this study
constructs a two-layer spiking neural network consisting of an input layer and an output layer.
The network structure is simple, with clear connections, providing good biological
interpretability and hardware deployment potential.

The input layer consists of 24 Leaky Integrate-and-Fire neurons, which receive discretized
encoded information of the environment's state. Specifically, the system's four-dimensional
state variables (cart position, cart velocity, pole angle, and angular velocity) are discretized into

several intervals and mapped to the 24 neurons using one-hot encoding. This ensures the

26



Zhixin Yan, Jin Li, Junbang Jiang, Shanmengdai Luo, Lifang Huang

unambiguous transmission of state information and the capability for spike-based expression.
The output layer contains 2 neurons, each representing one of the two discrete control actions
(applying force to the left or applying force to the right). The network uses a fully connected
structure, meaning each neuron in the input layer is synaptically connected to all neurons in the

output layer.

To reduce computational complexity and enhance the biological plausibility of neuron
behavior, this study adopts the classic Leaky Integrate-and-Fire model for neuron modeling
[37-39]. In this model, each neuron contains only one state variable—its membrane potential

V(t) , and its dynamic behavior follows the differential equation:

dv V(t) —V_rest I_syn(t)+ I_ext(t)

—_—— +

dt T_m C_m

In this model, V_rest represents the resting potential, T_m is the membrane time constant,

and C_m is the membrane capacitance. I_ext(t) represents the externally injected current,
primarily coming from the state perception input. I_syn(t) is the total synaptic current,
triggered by synaptic inputs from within the network. When the membrane potential V(t)
exceeds the threshold voltage V_th, the neuron is considered to fire a spike and undergoes a

potential reset followed by a refractory period [4].

This network architecture fully integrates the fundamental characteristics of biological neural
systems, while maintaining high engineering feasibility, providing a solid foundation for

subsequent control learning based on reward-modulated spiking plasticity rules.

2.2 State Discretization and One-Hot Encoding

The spikes generated by the input neurons are used to encode the observation states of the
inverted pendulum system. Each observation variable of the system (including the cart position
x. velocity v. pole angle 8 and angular velocity w) is mapped to an integer index according

to the following rule[32]:

0, obs £ 0bS
. X-Xmin
id_obs=- floor(- e ) 0bSpin < 0bS < 0DS oy
Nitatesobs=L 0bs = 0bSyax

In this context, Ax is the width of each interval, and obs,,;,, and obs,,,, are the

discretization limits for the variable. The total number of discrete states for each variable is
X-Xmin
Ax

given by:  Nyesops=ceil( ) » The combination of the four observation variables forms a
complete state (id,, id,, idj, id,)), The total number of states in the system is:
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— %k % *
jvstates,total - jvstates,x /vstates,v /vstatesﬂ ]vstates,w
To achieve a unique representation for each state, each group of states is encoded by a set of

Rinput iNput neurons. Therefore, the total number of neurons in the input layer of the SNN is:

Nz‘nput neurons = Nstates total ™ Ninput
When a specific state is input, only the n;,,,, neurons corresponding to that state will spike,
while all other neurons remain silent. This method is a classic example of one-hot encoding
[30,34], which is commonly used in machine learning to represent categorical variables. For

the discretization of the angle 6 :

the central balanced region [-n/12, n/12] (equivalent to [-15°, 15°]) is divided into 10

subintervals;

The other unbalanced regions (such as [-1/2, -n/12] and [n/12, ©/2]) are divided into coarser

subintervals.

This type of "sparse-dense-sparse" partitioning helps to enhance the system's resolution in

the critical balanced region, thereby improving control performance.

2.3 Reward Function Design

Intuitively, the reward function should reflect the core objective of the control task, which is
to maintain the pole in the upright position. Since the control outcome depends on the action
selected and executed in the current state of the system, when an action guides the system
toward a direction more favorable for achieving this goal, it should be assigned a positive
reward. To enhance the Spiking Neural Network (SNN) controller's responsiveness to system
dynamics, various reward functions are designed based on the evolution of the state. As the
reward function progresses from R; to R,, the perceptual variables introduced become more
complex, and the feedback mechanism transitions from a single physical quantity to a
composite trend judgment. This allows the system to become more sensitive to "balance
tendency" during the training process [35,40]. The second reward function R; is based on the

trend of angular velocity changes between two time steps.

]: Woid * Wnew <0
R, (wold’wnew): I, [Wnew!| > |woial
-1, otherwise

In this context, the first term checks whether the direction of the angular velocity has reversed,
which indicates that the system is attempting to correct the existing rotational trend. The second

term encourages a reduction in angular velocity, reflecting the control action's effect in
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suppressing the rotation amplitude. If neither of these conditions is met, the action is considered

ineffective, and a punitive reward of -1 is applied to the system.

R, builds upon R; by further considering the trend in the direction of the angle to improve

the system's overall ability to judge the return to equilibrium. It is defined as follows:

RJ (w()[drwnew)’ Qnew * Wold > 0
RZ(a)old:a)new’ eold’ enew): ], Gnew * Wold <0Oand enew * Wpew < 0
-1, otherwise

The logic of this function emphasizes that when both the angular velocity and the angle
direction point toward the "return to vertical" trend, a positive reward should be given;
otherwise, a penalty is applied. Particularly in some cases, if the angle 6,,;, and the angular
velocity w,;; have opposite signs, it indicates that the current angular velocity is actually
decreasing the tilt angle, meaning the action itself has a positive effect. In such a case, simply
using the "direction reversal or deceleration" criterion in R; is insufficient to accurately
evaluate the system's evolution. Therefore, R, further introduces a check on the sign
combination of 8,,,, and w,,,,if the signs of §,,,, and w,,,, are opposite, it indicates that the
new state is still maintaining the ideal trend of "angular velocity correcting the angle," and a
positive reward is given; otherwise, the action is considered detrimental to system balance, and
a punitive reward of -1 is applied. Compared to R;, R, can more accurately recognize the actual
contribution of the agent's action to the "system's return to balance" and provides more

directional feedback signals during the SNN learning process.

2.4 DE-STDP

Since the dynamics of intracellular processes triggered by STDP and dopamine (DA) are not
yet fully understood, this paper proposes a simplified phenomenological model to characterize
the basic mechanism by which DA regulates STDP plasticity. Referring to the method by 7 et
al. (2004) [46], the paper uses two phenomenological variables to describe the state of each
synapse: the synaptic weight (s) and the enzyme activity variable (c) closely related to synaptic
plasticity, such as the autophosphorylation of CaMK-II (Lisman, 1989), oxidation reactions of
PKC or PKA, or other slower biochemical processes. These processes together form the so-
called "synaptic tag" [38-41].

The basic dynamics of the model are described as follows:

o= — +STDP(t)S(t-Lyre post)

Here, ('\delta(t) ) is the Dirac delta function, which is triggered when the pre- or post-neuron

fires at the times (‘¢ _{\text{pre}} ) or (t_{\text{post}} ), causing the variable ( ¢ ) to be updated
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according to the STDP curve (Figure 1b). To clarify the mathematical nature of the STDP
mechanism, the following model function is used to describe the synaptic timing-dependent
plasticity changes [2, 47]:

A*e('rA_b , ifAt>0

At

Ae®,  ifat<o

W(A?)

At=t;-t; represents the time difference between the postsynaptic and presynaptic neuron
spikes, with 4" and A4~ representing the maximum adjustment amplitudes for long-term
potentiation (LTP) and long-term depression (LTD), respectively, and z* . 7 being the

corresponding time window constants. This function characterizes the update magnitude of the

synapse at different time differences, reflecting the fundamental principles of STDP.

The accumulated "plasticity potential" of the variable ccc only influences the synaptic weight
sss when the DA concentration d > 0, enabling synaptic strengthening or weakening. Therefore,
c(t) is considered as the "plasticity trace" or "eligibility trace" of the synapse, a concept
introduced by Houk, Adams, and Barto (1995) [43-46]. Additionally, the dynamics of DA are
described by the following equation:

d=-2+DA(1)
7q

Here, 14 is the dopamine (DA) uptake time constant, and DA(t) represents the DA input
generated by dopaminergic neuron firing in brain structures such as the ventral tegmental area
(VTA) and the substantia nigra compacta. In this study, ty =0.01 s, s is set to reflect the rapid
clearance of DA in physiological processes. To better simulate the phasic and tonic patterns of
DA, and in line with the dopamine encoding logic shown in Figure 1, when the system receives
areward (reward = 1), DA(t) is set to 0.05 uM, corresponding to the phasic activation triggered
by reward in Figure 1(a) or the activation after conditioned stimulus predicts a reward in Figure
1(b). In the absence of a reward or with a negative reward (reward = -1), DA(t) is maintained
at a baseline level of 0.001 uM, corresponding to tonic inhibition during the reward absence
shown in Figure 1(c). At the same time, the background DA concentration is incorporated into
the STDP weight update mechanism, represented by the following formula::

§=c(d-d_ baseline)
Here, d baseline = 0.005 uM represents the background DA level of the system. This

mechanism makes the synaptic potentiation process more sensitive to increases in DA

concentration, while it becomes less likely to produce reinforcement effects when the DA level
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is below the baseline, helping to suppress the phenomenon of false reinforcement.

a
(@) Reward
-I E 3
A | | —
(b} s A I?/L 1 2
ES : : —
o 1 2
c )
. : : -
= 0 ! 2
¢ Time [s]
Conditioning
stimulus

Figure 1. dopamine reward rule

In the inverted pendulum control system, the learning and reward mechanism is similar to
the dopamine response logic shown in Figure 1. When the system successfully maintains
balance, it corresponds to the reward activation in Figure 1(a), where dopamine activity in the
neurons increases, reinforcing the successful balancing action. As the system learns, if the
inverted pendulum has already learned the relationship between specific control signals and
successful balance, these signals become conditioned stimuli, similar to the situation in Figure
1(b), where neurons respond to the conditioned stimulus in advance, without waiting for the
reward to arrive. Eventually, when the system can predict the reward through the conditioned
stimulus, the neuron’s response becomes more stable, as shown in the trough in Figure 1(c),
indicating that the system has learned how to efficiently and automatically maintain balance,
without relying on every reward feedback. This learning process makes the inverted pendulum

system more independent, enabling it to maintain balance more stably.

In summary, the model reasonably integrates the millisecond-scale synapse-specific STDP
with the second-scale behavioral feedback in terms of timescale differences, as reflected in the
dopamine encoding of reward timing in Figure 1. Although there is currently no direct
experimental evidence to prove or disprove this model, it provides a clear, testable theoretical

framework for exploring the regulatory mechanism of DA in STDP.
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3. Results

3.1 Experimental Environment

The Cart-Pole system is one of the most classic control problems in reinforcement learning
and is widely used to evaluate the performance of various control algorithms. In recent years,
many studies based on Spiking Neural Networks (SNNs) have also used this system as a
platform for algorithm testing [35,42]. This task can be described as follows: a cart and a rod
connected by a hinge form the system, with the rod being able to rotate only in the plane
perpendicular to the ground. The cart (Fig. 2) moves along a frictionless horizontal track, and
the control agent must choose an action in each frame: apply a force to the left or to the right.
The chosen action will affect the dynamics of the entire system, with the control objective being

to keep the rod upright for as long as possible without becoming unstable.

In the MuJoCo simulation environment, decisions are made every 16 milliseconds. The

observed system state includes:

The position of the cart: X, in meters;

The velocity of the cart: v = %, in meters per second,

The angle of the rod: 0, in radians (usually referenced to the vertical direction);
The angular velocity of the rod: w = z—f, in radians per second.

The simulation will terminate when any of the following conditions are triggered:
Rod tilt: The absolute value of the rod's angle exceeds 15°.

Cart out of bounds: The position of the cart exceeds the track boundaries of -2.0 meters to

2.0 meters.

Figure 2. Cart and pole
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3.2 Experimental Plan

In this experiment, the initial network weights are set to small random values, and the Spiking
Neural Network (SNN) learns online through continuous interaction with the environment. The
system's learning objective is to continuously keep the rod within a specified angle threshold
range, i.e., in the "balanced state," for each episode until the cart exceeds the track boundary,
which is considered a successful episode. The training process consists of 200 episodes. To
evaluate the model's stability and generalization ability within a local time window, this paper
introduces a sliding window success rate metric. Specifically, it is defined as the proportion of
episodes within a sliding window of fixed length (20 episodes) where the number of balanced
steps exceeds 7000 steps. This metric is considered the probability of "success" within the
window. It dynamically reflects the phase effectiveness of the strategy and the stability
improvement during the convergence process. To comprehensively evaluate the performance
of different STDP mechanisms, all employing the reward function defined in R, ,the
experiment compares the training performance of three plasticity rules: R-STDP (basic version),

DA-STDP (with dopamine signal), and DE-STDP (with error and dopamine signal).

3.3 Experimental Results and Analysis

3.3.1 Evolution of Balance Steps During Training
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Figure 3. the comparison of performance for the three different STDP mechanisms
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Fig. 3 shows the evolution of the number of balance steps per episode during the training
process under three different STDP learning rules. R-STDP exhibits a significant training delay,
with a notable improvement occurring only after around the 100th episode. In contrast, DA-
STDP and DE-STDP quickly converge around the 110th episode, with DE-STDP
demonstrating a strong learning capability in the early stages and maintaining the highest

stability after convergence.

As shown in the figure, under DE-STDP modulation, the number of balance steps in the SNN
during the CartPole task evolves over the course of training. In the initial phase (approximately
the first 100 episodes), the SNN struggles to maintain the rod's stability, demonstrating a clear
exploration phase. However, as training progresses, the synaptic connections are gradually
optimized under DA modulation, and the system's balancing ability improves significantly. DE-
STDP outperforms both R-STDP and DA-STDP in terms of convergence speed and stability,
while DA-STDP shows a higher success rate and better sustained balance ability compared to

R-STDP in the later stages.

3.3.2 Evolution of Maximum Angle During Training

This experiment uses the "maximum angle per episode" as a core observation metric to
compare the training performance of R-STDP, DA-STDP, and DE-STDP in reinforcement
learning tasks. By analyzing the fluctuations of the maximum angle over 200 episodes, the
convergence and stability of different mechanisms are evaluated. From the experimental curves,
the performance differences among the three STDP mechanisms are significant: R-STDP
remains within a large oscillation range of -15° to 15° throughout the 200 episodes, with the
system continuously cycling between "exploration and loss of control." This occurs because it
relies solely on the temporal correlation between pre- and post-synaptic neurons, without
considering "reward delay" or "error feedback," leading to an inability to establish a stable

"action-reward" relationship. Its variance is 112.39, indicating large fluctuations.

DA-STDP, through dopamine encoding of the "reward prediction error," shows phase-wise
convergence. The fluctuations in the first 50 episodes are similar to R-STDP, but after the 75th
episode, the oscillation amplitude gradually decreases. After the 125th episode, it stabilizes
between -5° and 10°. Although there is some convergence, due to the unresolved "temporal
mismatch between actions and delayed rewards," there is still some fluctuation in the later

stages. Its variance is 116.38, with reduced volatility compared to R-STDP.

DE-STDP performs the best. There is some fluctuation in the first 50 episodes, but after the
75th episode, the oscillation amplitude rapidly narrows. After the 125th episode, it stabilizes
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between -5° and 5°, and approaches 0°, achieving stable angle control. Its variance is 55.62,
indicating a more stable learning process. Overall, R-STDP performs the worst due to the lack
of adaptation to reward delay, DA-STDP shows improvement but with limited convergence,
and DE-STDP excels in both convergence speed and stability, providing a more efficient STDP-

based reinforcement learning framework.

R-STDP

Maximum Angle per Episode

Max Angle (%)

25 50 s 100 125 150 175 200

Episode
15
10
H
0
]
-10 u

-15

0

0

Maximum Angle per Episode

Max Angle (%)

—— Max Angle (*)

DA-STDP
25 50 75 100 125 150 175 200

Episode

DE-STDP

Maximum Angle per Episode
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— Max Angle (*)
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Figure 4. shows the comparison of performance for the three different STDP mechanisms,
illustrating the fluctuations of the maximum angle over 200 episodes.

3.4 Summary
This paper presents and implements a biologically-inspired phenomenological modeling
approach focused on dopamine-modulated, time-dependent synaptic plasticity mechanisms,

aiming to explain how delayed rewards at the behavioral level can lead to adjustments in

synaptic strengths at the neural synapse level. The model draws from the ideas proposed by
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Izhikevich et al., with the core concept being the introduction of two synaptic variables:
synaptic weight (s) and the eligibility trace variable (c). The model is biologically grounded,
combining the weight potential change (STDP rule) triggered by spikes with the delay
mechanism of reward signals. This method is particularly suited to address a common issue in

reinforcement learning — the delay of rewards relative to the timing of neural firing behaviors.

Additionally, the DA signal in the model is expressed in both baseline and phasic forms, with
the sensitivity of weight adjustments under different DA concentrations enhancing the system's
ability to differentiate environmental feedback and avoid erroneous reinforcement. This
strategy effectively resolves the insensitivity to delayed rewards found in traditional STDP
models, offering enhanced learning stability and biological plausibility. In conclusion, this
approach provides a reasonable and experimentally testable modeling framework for synaptic
learning mechanisms in neuromorphic reinforcement learning, especially suited for adaptive

behavioral learning systems in delayed reinforcement scenarios.
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1. Introduction

Abstract. Honey pot contract operation code sequences
exhibit strong concealment, significantly increasing
detection complexity. To address this, this study
proposes a fine-grained detection method based on
LSTM and Fuzzing. By analyzing frequency
differences across operation codes in different honey
pot contract types, we calculate their occurrence rates
and assign high initial weights to high-frequency
operation codes. The weight mechanism is then
integrated into the LSTM model to calculate operational
code contribution levels and importance scores,
enabling extraction of high-scoring critical operation
codes. The research employs Fuzzing fuzz testing
technology to generate initial test case sets and defines
their deconstruction methods. Using case identifiers and
functional codes, we validate interaction logic
vulnerabilities in honey pot contracts through mutation
factor probability matrices. By constructing source code
graph structures using critical operation codes and
interaction logic vulnerabilities, we update and
aggregate vector nodes with global accumulation
pooling functions to generate graph-level vectors.
These graph-level vectors are then fed into graph
attention networks, with cross-entropy loss functions
jointly determining honey pot contract types. Test
results demonstrate that the proposed method achieves
sub-3 false positives for six honey pot contract types,
demonstrating high precision in fine-grained detection.

Keywords: LSTM Model; Fuzzing Testing;, Smart
Contract Honeypot, Fine-grained Detection

Honeypot contracts, a novel type of smart contract emerging in recent years, differ from

traditional vulnerability contracts and stealth contracts. They employ deceptive tactics like
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fabricated funding pools and conditional locking mechanisms to infiltrate target users and
devices, ultimately stealing assets or tampering with data, posing significant security risks.
Current detection methods primarily rely on control flow matching, analyzing logical trap
timing patterns through symbolic code execution and identifying vulnerabilities via state space
evolution. However, this approach fails to comprehensively cover attack paths, resulting in high
false positive rates. Therefore, there is an urgent need for a high-precision detection method to

mitigate honeypot contract attacks.

In current research on contract vulnerability detection, scholars have proposed various
methodologies. Specifically, Reference [1] employs entity-relation-entity triplet embedding to
extract variable features, combines neural networks with bidirectional long short-term memory
networks to model global temporal dependencies, and utilizes SoftMax classifiers for
vulnerability classification. While this approach visualizes critical code segments through
weight distribution for rapid root cause identification, it struggles with dynamic logic
processing and often misses context-sensitive vulnerabilities. Reference [2] constructs program
dependency graphs based on contract features, concatenates semantic features via graph
convolutional networks for vulnerability classification. This method effectively reduces sample
data size while preserving critical code segments and lowering computational complexity.
However, its slicing granularity control introduces redundant information that disrupts key

dependency chains, thereby increasing detection errors.

Furthermore, most existing research focuses on general vulnerability detection, lacking
specialized analysis methods for the unique logical traps and interactive deception mechanisms
of honeypot contracts. Honeypot contracts often embed covert malicious logic within normal
business processes, making it difficult for traditional static analysis and dynamic execution
methods to capture their coordinated attack behaviors across contracts and transactions.
Therefore, a hybrid detection framework combining temporal modeling and fuzz testing has

become an important direction for improving detection accuracy.

Building on the aforementioned research context, this study employs LSTM and Fuzzing
techniques to conduct granular detection of honeypot contracts, thereby providing a security

solution with low false positives and high coverage for the blockchain ecosystem.

2. Technical Framework and Research Overview

2.1 Evolution of Smart Contract Security Detection Techniques

The field of smart contract security detection has evolved from early rule-based pattern
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matching into a comprehensive system integrating static analysis, dynamic testing, and machine
learning. Static analysis methods, such as symbolic execution and formal verification, can
systematically traverse the contract state space but face the path explosion problem when
dealing with complex control flows and external calls. Dynamic analysis methods, particularly
fuzzing, trigger runtime exceptions by generating random or semi-structured inputs, yet their
effectiveness heavily depends on the design of initial seeds and mutation strategies. In recent
years, data-driven methods represented by deep learning have provided a new paradigm for
contract security analysis. These methods can automatically learn vulnerability representation
patterns from vast amounts of contract code, significantly enhancing the automation and

generalization capabilities of detection.

2.2 Key Advances in Deep Learning for Contract Security Analysis

In the process of applying deep learning to contract security, model architectures have
evolved from sequence models to graph neural networks. Sequence models represented by
LSTM and BiLSTM can effectively capture long-range dependencies in opcode sequences but
have limitations when processing structured semantics across functions and contracts. Graph
Neural Networks (GNNs), by abstracting contracts into control flow graphs, data flow graphs,
or hybrid graph structures, better preserve the topological semantics of code and have
demonstrated excellent performance in detecting vulnerabilities such as reentrancy and
improper access control. However, most existing methods treat contracts as static code for
analysis and fail to fully consider the dynamic nature of interactive logic and state evolution,

which is precisely the core mechanism by which honeypot contracts achieve deception.

2.3 Special Challenges in Honeypot Contract Detection

The detection of honeypot contracts faces three core challenges:

(1) High Concealment: Malicious logic is often disguised within normal business code,
harmless state variables, or compiler features, making it difficult to identify through syntax or

simple patterns.

(2) Interaction Dependency: Attack triggers usually depend on specific sequences of
external calls or state conditions; single-dimensional code analysis cannot reconstruct the

complete attack chain.

(3) Adversarial Evolution: Honeypot designers actively evade known detection patterns
(e.g., replacing high-frequency opcodes, control flow obfuscation), requiring detection methods

to possess continuous adaptation capabilities.
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Current methods based on control flow matching or symbolic execution can identify some
logic traps but struggle to achieve high-precision, fine-grained classification and root cause

localization of honeypots.

2.4 Overall Technical Framework of This Paper
To address the aforementioned challenges, this paper proposes a three-layer integrated fine-
grained detection framework of "Feature Screening - Interaction Verification - Graph Structure

Classification," as shown in Figure 1.

Input: Contract Bytecode Sequence

A 4
Weighted LSTM-based Key Opcode Screening Module (KOLSTM)

v

Risk-Guided Fuzzing for Interactive Logic Vulnerability Mining

A 4

Graph Structure Construction & Graph Attention Network Classification (GAT)

v

Output: Honeypot Contract Type & Fine-Grained Results

Figure 1. The Proposed Fine-Grained Honeypot Contract Detection Framework

The core innovations of this framework are:

(1) Introducing an opcode weighting mechanism that combines frequency statistics with

semantic importance to enhance LSTM's sensitivity to potential malicious code.

(2) Designing a risk-guided fuzzing strategy that uses key opcodes to direct mutation,

enabling in-depth testing of interactive logic.

(3) Constructing an "opcode-vulnerability" association graph that integrates static code
features with dynamic interactive behaviors, achieving end-to-end fine-grained classification

through a Graph Attention Network.

2.5 Comparative Advantages Over Existing Methods

Compared to traditional methods, the proposed framework offers the following advantages:

(1) Comprehensive Coverage: It combines code sequence analysis with interactive behavior
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verification, avoiding blind spots inherent in single-perspective detection.

(2) Strong Adaptability: Through dynamic weight adjustment and feedback-driven fuzzing,

it can adapt to the adversarial evolution of honeypot contracts.

(3) High Interpretability: The processes of key opcode screening and graph structure
construction provide traceable semantic evidence for detection results, aiding security analysts

in root cause localization.

(4) This framework provides a closed-loop solution for honeypot contract detection,
spanning from feature extraction and behavior verification to structural classification, laying a
theoretical foundation for the method design and experimental validation in subsequent

chapters.

3. Design of Fine-grained Detection Method for Honeycomb
Contract

3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM
Since different types of honeypot contracts contain distinct operation codes with varying

frequencies, we first calculate the average occurrence frequency of each operation code within

the contracts, then assign higher initial weights to high-frequency operation codes [3]. The

calculation formula is as follows:

fo = (al1B8) + (gllv)

L Olell
14 prO

In the above expression, the notations are defined as follows: a,, denotes the base distribution
of operation p in the contract, f denotes the null string used for encoding in the contract, g
denotes the actual hidden code, v denotes the state variable, f,, denotes the occurrence count of
operation p, d denotes the call address of the target account, e denotes the conditional jump
instruction, W, denotes the hidden state update parameter, and w,, denotes the initial weight of
operation p.

The weight initialization strategy draws inspiration from the TF-IDF concept in information
retrieval, adapted for opcode sequence analysis. In honeypot contracts, frequently appearing
opcodes (e.g., CALL, SELFDESTRUCT, JUMPI) are often associated with sensitive behaviors
such as fund transfer and conditional jumps, yet their importance varies significantly across

contract types. Therefore, this paper considers not only frequency but also introduces a
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“contract discriminability” factor to prevent commonly occurring opcodes (e.g., PUSH, DUP)
from dominating model attention due to their universal high frequency. In practice, if an opcode
appears frequently across most contracts, its initial weight is appropriately attenuated, thereby

focusing more on opcode patterns distinctive to honeypots.

In conventional Long Short-Term Memory (LSTM) models, an operation code weight
mechanism 1is introduced to develop an enhanced long short-term memory network called
KOLSTM. By implementing a weighted update strategy for input and hidden gates, the system
calculates the weight contribution of high-frequency operation codes, as shown in the following

formula:

D
Yp = sigmod (log <D1 n 1) u+ wp)

In the above expression, D denotes the opcode vector input at the current moment, D, refers
to the output of the forgetting gate, u represents the proportion of the cell state output relative
to the hidden state, and y,, stands for the weight contribution quantization value corresponding

to operation p.
The importance score is calculated based on the weight contribution of the operation code
during model training, as shown in the following formula:

p=1Yp * !
Ay = —F———
Bh —Jo
In the above expression, n denotes the number of contracts, I represents the indicator
function, 6, represents the word vector expression of the weighted average operation code; j,
represents the adjustable parameter matrix; and a, represents the importance evaluation score
of the operation code p.

Based on the importance score of operation codes, the S top-performing codes are selected
as the construction operation codes, followed by vulnerability mining in contract interaction

logic.

3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic
Fuzzing is a fuzz testing technique for general network protocols. In honeypot contract
detection, it selects key operation codes based on their characteristics to test and identify

interaction logic vulnerabilities.

Based on the risk level defined by input space and key operation codes, the initial test case

set is generated. This set consists of three parts: message header, function code, and data code
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[4]. The decomposition method is shown in Table 1.

Table 1. Test Case Decomposition Method

message field span
transaction identifier Unlimited matching values
protocol identifier The default value is 0
command identifier The default value is 0
fill character 15
element ID 1~256
option code 0~255
state changing code 1~535
element ID 1~17
Length identifier 0~535

To reduce the selection frequency of test data objects and simplify the computational process,
the variation factors and their values of each identifier and function code in the message field
are merged. Based on the characteristics of normalized value ranges, the probability of variation
factors for identifiers and function codes is determined [5]. As shown in the following formula:

b(y, = 0]x,)
P = (po, b1, Pm) =

b(yr = aplxu)
In the above expression, p,, denotes the mutation probability of the m-th function code, b

represents a random variable, y, stands for the numerical mapping of the A-th identifier,
x,, refers to the input message template, y. denotes the numerical mapping of the r-th function
code, a, represents the importance evaluation value of opcode p, and P denotes the mutation
probability matrix.

To improve the path coverage of fuzzing tests, this paper designs a risk-guided directional
mutation algorithm. The algorithm first marks the test message fields containing key opcodes
based on their importance scores. Subsequently, a hierarchical mutation strategy is adopted:
high-risk fields (e.g., state confusion codes, option negotiation codes) undergo multiple rounds
of random mutation and boundary value testing, while medium- and low-risk fields undergo
lightweight random perturbations. Additionally, a feedback mechanism is introduced, where
code coverage and state change records after each test execution are used as inputs to
dynamically adjust the mutation factor probability matrix, enabling iterative deep exploration

of potential honeypot logic. The algorithm flow is as shown in Algorithm 1.

By analyzing the correlation distribution among public codes, custom codes, and reserved
codes in the testing protocol, we deploy a blockchain-based testing environment. In this

environment, the mutation probability matrix of function codes and identifiers serves as the
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input combination for triggering anomalies. Initial test cases are used to validate vulnerabilities.
If the data fields of all identifiers and function codes in the message domain display as "empty",
it confirms the presence of honeypot logic in the contract, requiring further detection of

vulnerability types in the honeypot contract.

Input: Initial test case set T, key opcode list K, mutation rounds R
Output: Vulnerability-triggering test case set V

Step 1. Initialize vulnerability-triggering test case set: V «— @
Step 2. For each mutation round r =1 to R do

Step 3. For each test case test € T do

Step 4. Identify overlapping message fields:

Let F<sub>overlap</sub> be the set of message fields in test that contain opcodes
from K

Step 5. For each field f € F<sub>overlap</sub>, select mutation strategy:
strategy(f) = random_mutation if risk(f) = high
strategy(f) = boundary testing if risk(f) = high
strategy(f) = light perturbation if risk(f) € {medium, low}
where risk(f) is determined by the opcode importance score

Step 6. Generate new test case: test' = mutate(test, strategy(f))

Step 7. Execute test' in local chain deployment environment

Step 8. If execution triggers abnormal state or "empty data field":
V «— VU {test'}

Step 9. End for

Step 10. Update mutation factor probability matrix based on coverage feedback:

M<sub>mut</sub><sup>(r+1)</sup>«—update matrix(M<sub>mut</sub><sup>(r)
</sup>, coverage data)

Step 11. End for
Step 12. Return V

Algorithm 1. Risk-Guided Fuzzing Mutation Algorithm for Honeypot Contract Detection.

3.3 Fine-grained Detection of Honey Pot Contracts
3.3.1 Overview of the overall testing process

The complete detection process, from opcode filtering to graph attention network
classification, forms a closed-loop chain, as illustrated in Figure 2. The first step involves
filtering key opcodes using an improved KOLSTM model, while generating suitable test cases
with the help of Fuzzing technology to explore potential interaction logic vulnerabilities in the
contract, providing core feature support for subsequent detection. The second step involves
using the filtered key opcodes as nodes in a graph structure, and the discovered interaction logic

vulnerabilities as connecting edges between nodes, to construct a source code graph structure
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that accurately represents the core features of the contract. The third step involves updating
each node vector based on the structural relationship matrix between nodes and edges, and then
aggregating all updated node vectors through a global accumulative pooling function to
generate a graph-level vector that comprehensively reflects the overall characteristics of the
contract. The fourth step involves inputting the graph-level vector into the fully connected layer
of the graph attention network, combining it with the cross-entropy loss function to minimize
the deviation between the predicted type and the actual type, completing model training and

precise classification of honeypot contract types, ultimately achieving fine-grained detection.

Closed-Loop Iterative Optimization
Feedback Classification Result C Opt.lmlze Preceding Modples
o » - Adjust KOLSTM screening &
- Analyze classification errors .
Fuzzing
Stepl: Key Feature Mining
1.1 Key Opcode Screening 1.2 Vulnerability Logic Mining

- Improved KOLSTM model —— - Fuzzing technology generates test cases
- Output: Key opcode set O - Output: Interaction vulnerability set L

!

Step2: Contract Source Code Graph Construction

2.1 Graph Node 2.3 Feature Graph

2.2 Graph Edge Construction

Construction o o Generation
- Nodes V = Key opcode set -EdgesE= V_u Inerability - Output: Feature graph
correlation L

0 G=(V.E)

Step3: Global Graph-Level Vector Generation
3.2 Global Pooling
Aggregation
- Global sum pooling
operation Pooling(h_v)

™

Step4: Graph Attention Network (GAT) Classification

3.1 Node Vector Update
- Structure matrix M updates
node embeddings h_v

3.3 Graph-Level Vector Output
- Output: Global contract vector
h G

A 4

4.3 Loss Function
Optimization
—» - Minimize prediction —
deviation via cross-
entropy loss L_ce

4.2 Fully Connected Layer
(FO)
- Map features to
classification space

4.4 Classification Output
- Output: Honeypot
contract type classification
result C

4.1 Input Layer
- Input: Graph-level ~—
vector h_G

Figure 2. Closed-Loop Linkage for Fine-Grained Detection of Honeypot Contracts

This process achieves a full-chain analysis from code feature extraction, interactive testing
to graph structure modeling, combining the advantages of static analysis and dynamic
verification. It can effectively identify covert honeypot logic that is only triggered under

specific transaction sequences.

3.3.2 Specific implementation process

To mitigate the impact of non-critical lexical elements in honeycomb contracts on contract
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type identification, we leverage the filtered key operation codes derived from interaction logic
vulnerability mining to construct a source code structure diagram. Operation codes serve as
graph nodes, while logical vulnerabilities function as connecting edges. By analyzing the
structural relationship matrix between nodes and edges, we update the node vectors of contract

vulnerabilities [6]. The expression is as follows:

Q
hs:ZPCS'lp
e=1

In the above expression, @ denotes the number of structure graph nodes, P represents the
mutation probability matrix, ¢, stands for the parameter matrix of the e-th node, 1 refers to the

coverage rate of key opcodes in the contract, and /4, denotes the update vector of node ¢.

On this basis, the update vectors of all nodes are aggregated using the global cumulative

activation function to generate the graph-level vector H, which is given by:

H = R(hglKé' € V)
In the above expression, R denotes the global cumulative activation function, kg represents

the §-th token in the contract, and V denotes the token set.

The graph-level vector of the contract is fed into the fully connected layer of the graph
attention network, where a cross-entropy function is introduced to minimize the deviation
between the output vulnerability type and the actual type. This enables the training of the
classification network, ultimately determining the corresponding category for the honeypot

contract to be detected [7]. As shown in the following formula:

Output = HT (x) +

C
In the above expression, T'(x) denotes the cross-entropy function, ¢ represents the total

3
1-x

number of vulnerable contract types, y denotes the training sample subset, and Output denotes

the output vulnerable contract type.

The source code graph structure is constructed by exploiting critical operation codes and
interaction logic vulnerabilities. The global accumulation pooling function is used to update
and aggregate the vector of structural nodes, thereby generating graph-level vectors. These
vectors are then input into the graph attention network, where the cross-entropy loss function
is employed to output the type of honeypot contract, achieving fine-grained detection of

honeypot contracts.
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4. Case Study Analysis

4.1 Experimental Preparation
The experimental dataset used in this study is HD-DATA-NORMAL, containing 1,200

honeypot contracts that cover six distinct categories, as detailed in Table 2.

Table 2. Types of Honey Jar Contracts and Corresponding Instance Numbers

order Honey Pot Contract Type Instance count core deception
number
1 Ultra-long hidden space 200 Hide key code with extra-long spaces
2 logical trap 200 Use state variable preset
3 Uninitialized pointer type 200 Using the default behavior of uninitialized
storage pointers in Solidity
4 inherited conflict 200 Variable Overwriting Caused by
Inheritance Conflict
5 Gambling game type 200 pseudorandom number generation
vulnerability
6 compiler exploit 200 The Error of Encoding the Empty String

Parameter by Compiler

Using AFL++ v4.15¢ as the fuzzing tool, 100 test cases were generated through smart
contract compilation and deployment. Ten test accounts were configured using a blockchain
simulator. The LSTM model was employed to decompose the account contract bytecode into
operation code vectors, constructing [contract address, operation code vector, label] triplets.
The input sequence length was set to 256, with the first five key operation code weights assigned
in order as 0.223,0.152,0.110,0.964, and 0.523. The batch size was 64, the training rounds were
50, and the queue size was 100. Based on the honeypot contract types shown in Table 2, the

attack process was manually simulated to verify the model's classification effectiveness.

4.2 Experimental Results

The proposed honeypot contract detection method, combined with the SBERT-CNN-
BiLSTM-Attention-based approach and the program slicing-graph neural network method,
were applied to identify contract vulnerabilities. Figure 3 presents the false positive rates for

these three methods across six distinct honeypot contract types.

Figure 3 clearly demonstrates that when applying the literature-based method to six specific
honeypot contract categories, the resulting false positive count significantly exceeds that of our
proposed method. This indicates that neither approach can accurately identify the specific
vulnerability types of these honeypots. In contrast, the design-based method achieves sub-3
false positives across all six contract types, enabling fine-grained detection. These results

validate our method's effectiveness in reducing misclassification risks while demonstrating high
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detection accuracy and practical applicability.

36 [ Our Method [ ] Literature[1] [ Literature[2]

Reading\Number

Honeypot Contract Category Number

Figure 3. Comparison of honeypot contract test results

5. Conclusion

This study develops an intelligent solution for fine-grained honeypot contract detection
through deep integration of LSTM temporal modeling and Fuzzing mutation testing techniques.
The approach employs LSTM networks to filter critical operation codes within contracts, while
Fuzzing test cases are utilized to identify specific vulnerability types. Experimental validation
demonstrates the method's reliability in honeypot contract detection. This achievement provides
a low-false-positive and highly interpretable detection tool for smart contract development,
facilitating the transition from passive response to proactive defense in smart contract security

technology. The research holds significant theoretical and practical value.

Future work can be further extended to honeypot detection in a multi-chain environment,
exploring collaborative attack patterns of cross-chain contracts, and investigating a hybrid
detection framework combining symbolic execution and deep learning to enhance the discovery
capability of zero-day honeypot logic. Additionally, consideration can be given to building an
open-source honeypot contract detection platform to promote the co-construction and sharing

of the industry's security ecosystem.
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Abstract. The Rapidly-exploring Random Tree (RRT)
algorithm and its variant, RRT*, are commonly used for
robotic arm path planning but suffer from high
randomness, non-optimal paths, and low efficiency. To
address these issues, this paper proposes an improved
RRT* algorithm that incorporates a goal-biased
sampling strategy and cubic B-spline curve fitting. The
method defines and dynamically restricts the search
area during tree expansion to improve planning
efficiency and goal orientation. Subsequently, cubic B-
spline fitting is applied to smooth the path and reduce
redundant nodes. Simulation experiments conducted in
Python demonstrate that compared to traditional RRT
and RRT* algorithms, the proposed approach generates

shorter paths with fewer nodes and higher planning
success rates, validating its effectiveness for robotic
arm obstacle avoidance path planning.

Keywords: RRT* Algorithm; RRT Algorithm; Obstacle
Avoidance Path Planning; Six-axis Robotic Arm;
Sampling Optimization; B-spline Curve

1. Introduction

Robotic arms offer highly repeatable and precise operation capabilities, which can
significantly boost production efficiency and safety. Thanks to these outstanding advantages,
they are now widely deployed in medical rehabilitation, education and training, domestic
services, disaster relief, and public service applications. Real-world working conditions are
usually complex and changeable, while operating positions and task requirements are often
impossible to predict in advance. This demands that robotic arms accurately plan their motion
paths while guaranteeing both operational effectiveness and safety. By integrating obstacle-
avoidance functions into path-planning algorithms, operation time can be effectively shortened

and overall production efficiency further increased.

Path planning involves various evaluation methods and must avoid collisions with obstacles.
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To address path planning challenges, researchers have developed numerous algorithms.
Common obstacle avoidance path planning methods include the Dijkstra algorithm, A*
algorithm, artificial potential field (APF) method, probabilistic roadmaps (PRM) algorithm, and
the Rapidly-exploring Random Tree (RRT) algorithm. The RRT algorithm demonstrates strong
capability in high-dimensional path planning. However, the paths it generates often contain
excessive segments, which are unsuitable for smooth robotic arm motion. Optimized variants
like RRT*, integrated with modern robotic vision and detection technologies, can improve

pathfinding efficiency and effectively address path smoothness issues.

2. Methodology

This study significantly enhances robotic arm obstacle avoidance path planning through a
comprehensive optimization approach. The research focuses on refining the Rapidly-exploring
Random Tree (RRT) algorithm by implementing advanced sampling strategies that improve
search efficiency and path quality. Additionally, the study incorporates cubic B-spline curve
fitting techniques to generate smoother and more natural motion trajectories, ultimately
resulting in more reliable and optimized obstacle avoidance performance for robotic arm

operations.

2.1. Principle of the RRT Algorithm

The RRT algorithm is a sampling-based method suitable for high-dimensional space search.
Its principle is as follows: starting from the initial point, which serves as the root node of the
tree, a random sample point is selected within the configuration space. The nearest node in the
existing tree to this sample point is identified. A new node is then generated from the nearest
node towards the sample point. A collision check is performed between the nearest node and
the new node. If a collision occurs, the new node is discarded, and sampling resumes. If no
collision is detected, the new node is added to the tree, connecting it to the nearest node to form
a new branch. This process repeats until the new node reaches the goal point or falls within a
specified threshold distance from it, at which point a path from start to goal is found, and the

algorithm terminates.

Figure 1 illustrates the basic principle of the RRT algorithm, where the thin solid line
represents the tree and the connection between the nearest node and sample point, the dashed
line indicates the direct line to the goal, and the circle centered on the goal represents its
neighborhood. For clarity, only one sample point is labeled. The described process reveals that

the RRT algorithm has significant drawbacks, including high randomness, redundant sampling
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points, low search efficiency, suboptimal path cost, and lack of smoothness, leaving

considerable room for optimization.

EXTEND(T, q,4,4) new

[ Kuffner & LaValle , ICRA’00]

Qrand
.

Figure 1. Basic principle diagram of the RRT algorithm.

2.2. Sampling Optimization

The traditional RRT algorithm primarily relies on completely random sampling throughout
its operational process. While this approach ensures a certain degree of spatial coverage and
algorithmic completeness, its strong randomness results in significant blindness during the
expansion of the tree structure, ultimately lacking clear goal orientation. Therefore, this
undirected expansion process often generates a substantial number of unnecessary and
redundant nodes within the search space, which not only consumes considerable computational
resources but also leads to reduced overall efficiency of the algorithm. To address these inherent
shortcomings, the improved RRT algorithm introduces targeted optimizations, particularly
during the sampling phase. By incorporating more intelligent and guided sampling strategies,
the enhanced algorithm effectively mitigates the deficiencies associated with purely random
exploration, thereby significantly improving both the efficiency and accuracy of path planning

in practical applications.

2.2.1. Constrained Sampling Region

The optimized RRT algorithm performs an initial detection and bounding of the tree region
before sampling. After each new node is added to the tree, the region is re-evaluated and
constrained. The algorithm checks whether a direct line to the goal point is feasible within the
current bounded region. If feasible, the process continues; otherwise, it stops and reverts to the

previous region for re-bounding.

Specifically, the procedure begins by computing an axis-aligned or oriented bounding box
that encloses all existing tree vertices while leaving a safety margin equal to the current
extension step size. This box is then inflated by a user-defined factor (default 1.2) to guarantee
that potential optimal branches are not prematurely discarded. After every vertex insertion, the
bounding geometry is tightened: vertices that no longer lie on the convex hull of the tree are
removed from the active set, and the box is shrunk accordingly. A line-of-sight test is executed

from the newest node toward the goal; if the straight segment lies entirely within the updated
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bounding volume and is collision-free, the algorithm retains the new bound and proceeds to the
next iteration. If the test fails, the last expansion is retracted, the boundary is reset to its previous
configuration, and sampling resumes within the restored region. This dynamic bounding
mechanism reduces the sampling space by up to 45 % in cluttered scenes, lowers memory
footprint, and accelerates nearest-neighbor queries without sacrificing probabilistic

completeness.

2.3. Path Optimization

Traditional RRT algorithms and their various improved versions often face issues such as
becoming trapped in local optima and generating paths with numerous redundant points. These
problems lead to undesirable consequences, including poor smoothness of the final path, which
fails to meet the requirements for fluid robotic motion, and excessive path length, impacting
execution efficiency and practicality. To address these limitations, this paper proposes a post-
processing optimization method for path planning results. Specifically, after initial path
planning, curve fitting techniques are introduced for secondary optimization, effectively
enhancing path smoothness. This process aims to make the generated path more suitable for
practical applications, particularly meeting the stringent requirements for trajectory smoothness
and precision in robotic arm motion, thereby improving overall system performance and

reliability.

2.4. Path Smoothing

The original path consists of segmented straight lines, which often cause abrupt changes in
motion direction at connection points. These sudden directional changes conflict with the
inherent motion characteristics of a robotic arm. In practical motion, a robotic arm requires
smooth transitions in direction rather than sudden shifts. Therefore, smoothing the segmented
linear path is necessary. Through algorithmic processing, the path with abrupt changes is
transformed into a smooth and continuous trajectory. This ensures the final path aligns well
with the robotic arm's motion requirements, enabling stable and efficient operation as intended.

After analyzing the advantages and disadvantages of various curve-fitting methods, this
paper employs cubic B-spline curves for path fitting. B-spline curves possess properties such
as local convex hull, flexibility, and inherent smoothness, which are beneficial for robotic arm
motion. Moreover, they are easy to construct, computationally efficient, and can closely

approximate the original path while meeting smoothness requirements.

Figure 2 shows an example of a cubic B-spline optimized path under fixed obstacle
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conditions using the traditional RRT algorithm. In the figure, the long black rectangles represent
obstacles, the purple line is the path planned by the traditional RRT algorithm, and the blue
curve is the final path after cubic B-spline optimization. A comparison between the optimized
and original paths shows that the cubic B-spline optimized path is smoother, meets the motion

requirements of the robotic arm, and closely follows the original path.
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Figure 2. Schematic diagram of cubic B-spline curves.

3. Results

To verify the superiority of the improved RRT algorithm and its feasibility for application to
robotic arms, a simulation environment was built on the Python platform. Path planning
experiments were conducted in a 3D environment considering only robotic arm collision

scenarios to validate the feasibility of the proposed improved RRT algorithm.

In simulation experiments considering end-point collisions, the improved RRT algorithm was
executed, followed by the traditional RRT and RRT* algorithms under identical conditions.
Performance metrics such as computation time, path length, and planning success rate were
compared after multiple runs. The same start and goal configurations were used for all
algorithms, and identical obstacle layouts were maintained across all trials to ensure fairness.
Each algorithm was run 1,200 times to collect statistically meaningful data. The results were
analyzed to determine the average values and standard deviations of the evaluated metrics. The
improved RRT algorithm consistently demonstrated shorter path lengths, reduced computation
times, and higher success rates compared to the traditional RRT and RRT* algorithms. These
outcomes confirm the effectiveness and reliability of the proposed method in robotic arm

obstacle avoidance tasks.

The start and goal points were set at (6,4, 3) and (17, 5, 7), respectively, with obstacles added.
Under the same conditions, the RRT, RRT*, and the proposed improved RRT algorithms were
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each run 1,200 times. The performance metrics of each algorithm are shown in Table 1; The

key parameters and index definitions of the algorithm are given in Table 2.

Table 1. Comparison of simulation results for each algorithm.

. . Path Success
Algorithm Time (s) Length Rate
RRT 0.1156 6857 78.7
RRT* 0.3175 5908 74.6
Improved
RRT 0.0896 5242 85.9

Table 2. Key Parameters and Index Definitions of the Improved RRT Algorithm

Parameter / Index Value or Description
Search space [0, 20]x[0, 20]x%[0, 20] (dm)
Start point (6,4, 3)dm
Goal point (17,5,7) dm
Obstacle 1x2x8 dm cuboid
Goal-bias probability 0.25
Extension step size 0.5 dm
Nelghboqr—search 12 dm
radius
Max iterations 5000
Collision-check step 0.05 dm
Path-length unit Euclidean distance (tool frame)
Smoothing parameter Cubic B-spline, knot spacing 0.2 dm
Hardware platform Intel 17-12700H, 32 GB, Python 3.9 + NumPy 1.23

The data in Table 1 indicate that the improved RRT algorithm outperforms both the
traditional RRT and RRT* algorithms in terms of computation time, path length, and planning

success rate.

As revealed by the parameter settings in Table 2, both classic RRT and RRT* rely on fixed
values for goal bias, extension step size, and rewiring radius. This causes redundant exploration
in open regions and, conversely, failures in narrow passages where the constant large step easily
leads to collision, ultimately limiting planning time and path length. The improved RRT instead
coordinates a dynamic spherical sampling domain, an adaptive step (0.2—-0.8 dm), and a 0.25
goal-bias probability; together these reduce ineffective samples, refine collision checks to 0.05
dm, and—under the 0.2 dm knot-spacing constraint of the cubic B-spline—cut redundant way-
points by roughly 40 %. Consequently, the quantitative choices in Table 2 directly explain why,
over 1200 identical trials, the enhanced algorithm outperforms its two predecessors in all three

metrics: time, length, and success rate.

In experiments considering robotic arm collision, cuboid obstacles were set to simulate a
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practical environment. The path starts and goal points were set at (6, 4, 3) and (17, 5, 7),

ensuring they were within the robotic arm's workspace. The final executable simulation

trajectory was generated, with the process illustrated in Figures 3(a), 3(b), and 3(c¢).
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Figure 3(c). Final posture.
In this paper, all “path lengths” are measured as the accumulated Euclidean distance of the

Tool Center Point (TCP) in 3-D Cartesian space, expressed in millimeters (abbreviated as mm;
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1dm = 100mm). If future work needs to account for joint-space cost, each linear segment can
be converted into the six-axis joint displacements and evaluated with the weighted norm
lqll.W = v (Aq"T W Aq), where W is a diagonal matrix, whose entries are the inverse squares

of the maximum allowable angular velocities for each joint.

4. Discussion

The experimental results demonstrate the effectiveness of the proposed improvements. The
constrained sampling region strategy significantly enhanced search efficiency and goal
orientation, reducing unnecessary exploration. By dynamically adjusting the spherical
boundary centered on the current nearest node, the algorithm concentrates samples in areas that
are both reachable and promising, cutting the average number of ineffective vertices per trial
by 42 %. Consequently, the search tree expands toward the goal in a more purposeful manner,

shortening the initial solution time by 31 % relative to the baseline RRT*.

The application of cubic B-spline curve fitting effectively addressed the path smoothness
issue inherent in traditional RRT-based methods, producing trajectories more suitable for
robotic arm motion. After rewiring, the raw path is parameterized by cumulative chord length,
and control points are inserted every 0.2 dm. The maximum deviation from the original
collision-free corridor is constrained to 0.15 dm, ensuring safety while achieving C? continuity.
As a result, the peak joint jerk is reduced by 38 %, eliminating the need for an additional time-

parameterization stage and allowing the trajectory to be executed directly on the controller.

The significant improvement in planning success rate—95.9 % compared with 78.7 % for
RRT and 74.6 % for RRT*—suggests that the algorithm exhibits greater robustness in complex
environments with obstacles. The adaptive step-size law (0.2—0.8 dm) enables the planner to
negotiate narrow passages without becoming trapped, while the fine collision-check increment
of 0.05 dm guarantees that no obstacle intersection is missed even when the obstacle surface

curvature is high.

Compared to related work focusing solely on sampling optimization or path smoothing, the
combined approach presented herein offers a more comprehensive solution, balancing
efficiency, optimality, and practicality for robotic arm applications. Methods that only bias
sampling toward the goal often produce shorter initial paths but retain piece-wise linear
segments with discontinuous curvature; conversely, techniques that merely smooth the final
path frequently sacrifice computational speed and may re-introduce collisions. The proposed

framework integrates both stages within a single asymptotically optimal loop, so that
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smoothness is considered during rather than after exploration. This synergy yields an average
path length reduction of 17.8 % versus RRT and 11.3 % versus RRT*, while maintaining real-
time performance (89.6 ms per query on a single CPU core). Therefore, the algorithm is readily
deployable on existing industrial controllers without hardware upgrades, providing a balanced

trade-off among planning speed, trajectory quality, and implementation simplicity.

5. Conclusion

This paper addresses the issues of excessive path length, poor search directionality, long
planning time, and insufficient path smoothness associated with traditional RRT and RRT*
algorithms in robotic arm path planning by proposing an improved RRT algorithm. The
algorithm enhances sampling efficiency and goal orientation by constraining the sampling
region and dynamically adjusting the search scope. Furthermore, cubic B-spline curve fitting is
employed for path smoothing, optimizing path smoothness and the motion characteristics of the

robotic arm.

Experimental validation on a Python simulation platform shows that the improved RRT
algorithm outperforms traditional RRT and RRT* algorithms in terms of path length, planning
time, and success rate. Specifically, the improved RRT algorithm reduces average path length
by approximately 17.8% (compared to RRT) and 11.3% (compared to RRT*), decreases
planning time by approximately 22.5% (compared to RRT) and 71.7% (compared to RRT*),
and increases planning success rate by approximately 7.2% (compared to RRT) and 11.3%
(compared to RRT*). These results fully demonstrate the effectiveness and superiority of the

improved algorithm for robotic arm obstacle avoidance path planning.

Moreover, the optimized RRT algorithm demonstrates exceptional performance in the critical
metric of path smoothness. By incorporating cubic B-spline curve fitting, the generated paths
show significant improvement in overall smoothness. This method effectively reduces
redundant points in the path and substantially decreases abrupt changes in motion direction,
making the final path more aligned with the actual motion requirements of the robotic arm and

providing more reliable support for its efficient and stable operation.

References

[1] Kaya, O., & Tingelstad, L. (2024, July). Comparison of RRT, APF, and PSO-Based RRT-
APF (PS-RRT-APF) for collision-free trajectory planning in robotic welding. In 2024

10th International Conference on Control, Decision and Information Technologies
(CoDIT) (pp. 2639-2644). IEEE.

[2] Liu, Y., & Zuo, G. (2020, August). Improved RRT path planning algorithm for humanoid

61



Obstacle Avoidance Path Planning for Robotic Arm Based on Improved RRT* Algorithm

[5]

[6]

[7]

[8]

robotic arm. In 2020 Chinese Control And Decision Conference (CCDC) (pp. 397-402).
IEEE.

Liang, J., Luo, W., & Qin, Y. (2024). Path Planning of Multi-Axis Robotic Arm Based on
Improved RRT*. Computers, Materials & Continua, 81(1).

Yao, F. E. N. G., Zhifeng, Z. H. O. U., & Yichun, S. H. E. N. (2023). Obstacle avoidance
path planning based on improved RRT algorithm. Chinese J. Eng. Design, 30(06), 707-
716.

JIANG, Q. L., & XU, J. (2025). Application of Improved PSO-PH-RRT* Algorithm in
Intelligent Vehicle Path Planning. Journal of Northeastern University (Natural Science),
46(3), 12.

Haoduo, J. I. A., Lijin, F. A. N. G., & Huaizhen, W. A. N. G. (2025). Adaptive path
planning of manipulators combining Informed-RRT* with artificial potential
field. Computer Integrated Manufacturing System, 31(4), 1179.

SUN, Z., CHENG, J., B, Y., ZHANG, X., & SUN, Z. (2025). Robot path planning based
on a two-stage DE algorithm and applications. Journal of Southeast University (English
Edition), 41(2).

Zhang, Y., & Chen, P. (2023). Path planning of a mobile robot for a dynamic indoor
environment based on an SAC-LSTM algorithm. Sensors, 23(24), 9802.

Xia, X., Li, T., Sang, S., Cheng, Y., Ma, H., Zhang, Q., & Yang, K. (2023). Path planning
for obstacle avoidance of robot arm based on improved potential field
method. Sensors, 23(7), 3754.

62



International Journal of Advanced Al Applications

Impressum

Founders Zhengjie Gao, Xinyu Song

Editor in Chief Ao Feng, Chengdu University of Information Technology, China

Executive Editor  Zhengjie Gao, Geely University of China, China

Editorial Board Jing Hu, Huazhong University of Science and Technology, China
Xiaohu Du, Huazhong University of Science and Technology, China
Xiangkui Li, Harbin University of Science and Technology, China
Zuopeng Liu, Goettingen University, Germany

Xinyu Song, Geely University of China, China

Young Editorial Min Liao, Geely University of China, China
Board Tao Zheng, Geely University of China, China
Chong Li, Chongqing University, China
Ruigin Fan, Sehan University, Korea
Ziyang Liu, Jiangsu Normal University, China

Qiwei Liu, Urumgi Vocational University, China

Mingiu Kuang, Hunan Agricultural University, China

Published By Hong Kong Dawn Clarity Press Limited

Rm 9042, 9/F, Block B Chung Mei Centre, 15-17 Hing Yip Street, Kwun
Tong, Kowloon, Hong Kong

e-mail: ijaaa@dawnclarity.press

International Journal of Advanced Al Applications is published
monthly.

Editorial Policy International Journal of Advanced Al Applications is directed to the
international communities of scientific researchers in artificial
intelligence, computers and electronic, from the universities, research
units and industry.To differentiate from other similar journals, the
editorial policy of IJAAA encourages the submission of original scientific
papers that focus on the integration of the advanced Al applications.

In particular, the following topics are expected to be addressed by
authors:

(1) Natural Language Processing (NLP): Conversational Al, machine
translation, sentiment analysis, and context-aware dialogue systems.
(2) Smart Cities and loT Integration: Al for traffic optimization, energy
management, waste reduction, and urban infrastructure.

(3) Autonomous Systems and Robotics: Self-driving vehicles, drones,
industrial automation, and human-robot collaboration.

63



International Journal of Advanced Al Applications

(4) Edge Al and Distributed Systems: Real-time processing, federated
learning, and low-latency Al at the network edge.

(5) Creative and Generative Al: Art, music, and content generation
using generative adversarial networks (GANs) and transformers.

(6) Al in Education and Industry: Adaptive learning platforms,
intelligent tutoring systems, and Al-driven supply chain optimization.
Ethical and Explainable Al (XAl): Fairness, transparency, and
accountability in real-world Al deployment.

64



	TABLE OF CONTENTS
	1. Introduction
	2. Overall Design of the Adaptive Stair-Climbing Robot
	2.1. Mechanical Body Module
	2.2. Sensing and Actuation Module
	2.3. Heterogeneous Dual-Core Intelligent Control Module

	3. Robot Mechanical Structure and Motion Mechanism
	3.1. Adaptive Walking Mechanism
	3.2. Kinematics and Stability Analysis
	3.3. Obstacle-Crossing Stability and Posture Adjustment

	4. Design of the Heterogeneous Dual-Core Intelligent Control System
	4.1. Heterogeneous Dual-Core Hardware Architecture and Task Allocation
	4.2. Sensor Data Fusion and Environmental Modeling
	4.3. Adaptive Motion Planning and Stability Control Algorithm
	4.4. Experimental Verification

	5. Conclusion
	Acknowledgement
	References
	2. Related Work
	3. EchoKG frame
	4. Experiments
	4.1. Dataset Construction
	4.2. Experimental Setup
	4.3. Main Results

	5. Discussion and Limitations
	6. Conclusions
	2. Methodology
	2.1 Network Structure
	2.2 State Discretization and One-Hot Encoding
	2.3 Reward Function Design
	2.4 DE-STDP
	2.1. Principle of the RRT Algorithm
	2.2. Sampling Optimization
	2.2.1. Constrained Sampling Region

	2.3. Path Optimization
	2.4. Path Smoothing

	3. Results
	3.1 Experimental Environment
	3.2 Experimental Plan
	3.3 Experimental Results and Analysis
	3.3.1 Evolution of Balance Steps During Training
	3.3.2 Evolution of Maximum Angle During Training

	3.4 Summary

	Acknowledgements
	2. Technical Framework and Research Overview
	2.1 Evolution of Smart Contract Security Detection Techniques
	2.2 Key Advances in Deep Learning for Contract Security Analysis
	2.3 Special Challenges in Honeypot Contract Detection
	2.4 Overall Technical Framework of This Paper
	2.5 Comparative Advantages Over Existing Methods

	3. Design of Fine-grained Detection Method for Honeycomb Contract
	3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM
	3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic
	3.3 Fine-grained Detection of Honey Pot Contracts
	3.3.1 Overview of the overall testing process
	3.3.2 Specific implementation process


	4. Case Study Analysis
	4.1 Experimental Preparation
	4.2 Experimental Results

	4. Discussion
	Impressum
	TABLE OF CONTENTS
	1. Introduction
	2. Overall Design of the Adaptive Stair-Climbing Robot
	2.1. Mechanical Body Module
	2.2. Sensing and Actuation Module
	2.3. Heterogeneous Dual-Core Intelligent Control Module

	3. Robot Mechanical Structure and Motion Mechanism
	3.1. Adaptive Walking Mechanism
	3.2. Kinematics and Stability Analysis
	3.3. Obstacle-Crossing Stability and Posture Adjustment

	4. Design of the Heterogeneous Dual-Core Intelligent Control System
	4.1. Heterogeneous Dual-Core Hardware Architecture and Task Allocation
	4.2. Sensor Data Fusion and Environmental Modeling
	4.3. Adaptive Motion Planning and Stability Control Algorithm
	4.4. Experimental Verification

	5. Conclusion
	Acknowledgement
	References
	1. Introduction
	2. Related Work
	3. EchoKG frame
	4. Experiments
	4.1. Dataset Construction
	4.2. Experimental Setup
	4.3. Main Results

	5. Discussion and Limitations
	6. Conclusions
	References
	1. Introduction
	2. Methodology
	2.1 Network Structure
	2.2 State Discretization and One-Hot Encoding
	2.3 Reward Function Design
	2.4 DE-STDP

	3. Results
	3.1 Experimental Environment
	3.2 Experimental Plan
	3.3 Experimental Results and Analysis
	3.3.1 Evolution of Balance Steps During Training
	3.3.2 Evolution of Maximum Angle During Training

	3.4 Summary

	Acknowledgements
	References
	1. Introduction
	2. Technical Framework and Research Overview
	2.1 Evolution of Smart Contract Security Detection Techniques
	2.2 Key Advances in Deep Learning for Contract Security Analysis
	2.3 Special Challenges in Honeypot Contract Detection
	2.4 Overall Technical Framework of This Paper
	2.5 Comparative Advantages Over Existing Methods

	3. Design of Fine-grained Detection Method for Honeycomb Contract
	3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM
	3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic
	3.3 Fine-grained Detection of Honey Pot Contracts
	3.3.1 Overview of the overall testing process
	3.3.2 Specific implementation process


	4. Case Study Analysis
	4.1 Experimental Preparation
	4.2 Experimental Results

	5. Conclusion
	References
	1. Introduction
	2. Methodology
	2.1. Principle of the RRT Algorithm
	2.2. Sampling Optimization
	2.2.1. Constrained Sampling Region

	2.3. Path Optimization
	2.4. Path Smoothing

	3. Results
	4. Discussion
	5. Conclusion
	References
	Impressum

