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Abstract. With the deepening trend of societal aging, 

the demand for mobile robots in scenarios such as 

elderly assistance, disability aid, logistics, and rescue is 

growing. Navigating stairs in complex, unstructured 

environments has become a key challenge in robotics. 

Traditional wheeled, tracked, or legged robots suffer 

from weak adaptability, insufficient stability, or high 

cost. This paper designs an adaptive stair-climbing 

robot utilizing a heterogeneous dual-core control 

architecture built with an STM32H743 microcontroller 

and a Raspberry Pi 4B. It integrates multiple sensors 

including an RGB-D camera, an Inertial Measurement 

Unit (IMU), and encoders. The Raspberry Pi 4B serves 

as the upper-layer intelligent decision-making core, 

performing planning and decision-making through 

fuzzy logic and Model Predictive Control (MPC). The 

STM32H743 acts as the lower-layer real-time control 

core, achieving precise execution via PID control. The 

robot can adapt to stairs with slopes of 30°–45° and step 

heights of 150–200 mm made of different materials, 

maintaining a stability margin of no less than 20 mm 

during climbing. Compared to traditional tracked 

robots, the stability margin is improved by over 35%. 

The robot demonstrates good stability and robustness in 

various stair environments, providing an innovative 

technical approach for mobile robots in complex 

terrains. 

Keywords: Adaptive Stair-climbing Robot; Heterogene

ous Dual-core Control; Multi-Sensor Fusion; PID Con

trol 

1. Introduction 

To address stair terrain, related research domestically and internationally has primarily 

focused on three categories of robots: wheeled, tracked, and legged. Wheeled mechanisms offer 

high efficiency but poor obstacle-crossing capability. Tracked mechanisms improve possibility 
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to some extent but often lack stability during stair ascent, being prone to posture instability. 

Legged robots have the best environmental adaptability but are limited by complex control logic 

and high manufacturing costs [1]. The core performance differences among different types of 

mobile mechanisms are shown in Table 1. In recent years, the use of hybrid mobile mechanisms 

has become a research focus for such compromise solutions [3]. Although existing hybrid 

mechanisms balance movement efficiency and obstacle-crossing ability, most rely on pre-

programmed gaits. In unknown stair environments, they exhibit algorithmic lag in dynamic 

center-of-gravity adjustment, with response delays commonly exceeding 80 ms. In contrast, a 

heterogeneous dual-core architecture can compress decision-making delays to within 50 ms. 

The multi-wheel-group mechanism combines the efficiency of wheeled systems with the 

obstacle-crossing capability of tracked systems, allowing flexible switching between wheeled 

and tracked modes, providing a solid mechanical foundation for adapting to stair terrain. 

Most existing research focuses on mechanical structure improvements or relies on fixed gaits 

preset with stair parameters. When dealing with unknown or variable-parameter stair 

environments, the "perception-decision-adaptation" intelligent control capability of such 

solutions remains insufficient. Embedding an intelligent system into a multi-wheel-group 

mobile platform to endow it with autonomous adaptation capability is key to solving the 

problem. 

Table 1. Performance comparison of different mobile mechanisms for stair climbing. 

Mobile Mechanism Type 
Movement 

Efficiency 

Obstacle-Crossing 

Capability 

Stair-Climbing 

Stability 

Wheeled Mechanism High Weak 
Poor (Prone to 

Slipping) 

Tracked Mechanism Medium Medium 
Fairly Poor (Prone to 

Instability) 

Legged Mechanism Low Strong Good 

Hybrid Mechanism Medium Medium Average 

Adaptive Multi-Wheel-Group 

Mechanism 
Medium-High Strong Excellent 

This paper proposes an innovative "heterogeneous dual-core intelligent control + multi-

sensor fusion" solution, developing an adaptive stair-climbing robot. The heterogeneous dual-

core architecture balances real-time control and intelligent decision-making. The upper layer 

uses a fuzzy control algorithm, which does not rely on an accurate mathematical model, to 

achieve dynamic decision-making. The lower layer uses PID control for accurate execution. 

The aim is to endow the robot with autonomous adaptation capability in unknown stair 

environments, overcoming the limitations of traditional solutions, and providing a new 

approach for autonomous robot navigation in unstructured environments. 
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2. Overall Design of the Adaptive Stair-Climbing Robot 

The adaptive stair-climbing robot system is a complex system integrating mechanics, 

electronics, control, and information processing. Its overall design follows the principles of 

modularity, intelligence, and high reliability. The entire system consists of three core modules: 

the mechanical body module, the sensing and actuation module, and the heterogeneous dual-

core intelligent control module. The overall framework diagram is shown in Figure 1, 

illustrating the information and control flow from environmental perception to motion 

execution. 

 

Figure 1. Overall system framework diagram. 

2.1. Mechanical Body Module 

The mechanical body is the physical carrier of the robot, as shown in Figure 2. 

  

Figure 2. Rendering of the adaptive stair-climbing robot. 
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It adopts a multi-wheel-group mobile mechanism that combines the efficiency of wheeled 

systems with the obstacle-crossing ability of tracked systems. The mechanism consists of 4 

symmetrically distributed wheel groups. Each wheel group integrates a driving wheel, auxiliary 

support wheels, and an elastic tensioning component. Based on feedback from step contact, it 

can automatically adjust the support angle and tension of the wheel groups, ensuring multiple 

support points provide stable support force during climbing. This retains the high movement 

efficiency of wheeled mechanisms while possessing the strong obstacle-crossing capability of 

tracked mechanisms, effectively preventing tipping over [4]. 

2.2. Sensing and Actuation Module 

The sensing and actuation module is the "nerves" and "muscles" for the robot to perceive the 

environment and execute actions. It includes a depth vision sensor (e.g., RGB-D camera) for 

detecting the distance, angle, and step height of stairs ahead; an Inertial Measurement Unit 

(IMU) for measuring changes in the robot's own posture; encoders for feeding back the actual 

positions of joints; and DC servo motors or steering gears as power outputs. The core perception 

task, undertaken by the RGB-D camera for stair environment detection, requires accurate 

identification and parameter extraction of stair targets. The complete logical flow for stair target 

detection is shown in Figure 3. This process takes color images and depth point cloud data as 

input, achieves stair contour segmentation and key parameter fitting through multi-stage 

processing, and obtains reliable environmental perception data. Based on this, the robot makes 

adaptive stair-climbing decisions [5]. 

 

 

Figure 3. Flowchart of stair target detection. 

2.3. Heterogeneous Dual-Core Intelligent Control Module 

The heterogeneous dual-core intelligent control module is the intelligent core of the entire 

robot, adopting a dual-processor structure with different architectures. The implementation 

flow is shown in Figure 4. The STM32H743 microcontroller serves as the real-time control 

core, running the RT-Thread operating system. Its main functions are time-sensitive basic 
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operations, millisecond-level motor servo control, and rapid collection and filtering of multi-

channel sensor signals. In contrast, the more powerful Raspberry Pi 4B, running the ROS 

(Robot Operating System), handles computationally intensive intelligent decision-making tasks 

such as environmental recognition, multi-sensor data fusion, and real-time motion planning. 

The two cores communicate in real-time via a high-speed serial interface (UART), continuously 

exchanging control commands and system states, forming a perfect closed-loop autonomous 

control cycle from perception to decision-making and execution, endowing the robot with both 

rapid reflex capability and complex reasoning ability. 

 

Figure 4. Flowchart of the heterogeneous dual-core intelligent control module. 

3. Robot Mechanical Structure and Motion Mechanism   

3.1. Adaptive Walking Mechanism 

The multi-wheel-group mobile mechanism, which fuses wheeled efficiency and tracked 

obstacle-crossing ability, is the foundation for realizing the robot's stable stair-climbing 

function. This mechanism abandons the structural limitations of traditional single wheeled or 

tracked designs. It employs 4 independently driven wheel group units arranged in a rectangular 

array on both sides of the body. Each wheel group unit includes an 80 mm diameter 

polyurethane driving wheel, auxiliary support wheels, and an elastic tensioning link rod with a 

stroke of 0-120 mm. A torque sensor (model: TJH-803) at the wheel group pivot triggers wheel 

group posture adjustment. 

When a wheel group contacts the vertical face of a step and the pressure exceeds a set 

threshold of 5 N, the equivalent motor (JGA25-370) activates, actively lifting the wheel group 



Design of an Adaptive Stair-Climbing Robot Based on Heterogeneous Dual-Core Intelligent 

Control Technology 

6 

to form a stable temporary auxiliary support point. The other wheels continue moving smoothly 

to push the body forward. After the wheel group completely crosses the vertical face and lands 

on the step tread, the tensioning link automatically resets. Through this physical interaction-

based feedback and independent switching, the robot achieves dynamic adaptation. Without 

relying on complex external sensor systems, it balances the efficiency of wheeled mechanisms 

and the multi-support-point obstacle-crossing capability of tracked systems through natural 

interaction between wheel groups and steps, demonstrating flexibility in adapting to steps of 

varying heights and slopes. 

3.2. Kinematics and Stability Analysis 

To quantitatively analyze the robot's motion, a simplified kinematic model was established. 

Let the projection of the robot's center of gravity on the horizontal plane be 𝐺(𝑥𝑔, 𝑦𝑔), and the 

contact points of each wheel group with the ground be 𝑃𝑖(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2,3,4. During stair 

climbing, the robot's static stability margin SM can be defined as the minimum value of the 

shortest distances from the center of gravity G to each side of the current support polygon.     

𝑆𝑀 = 𝑖𝑚𝑖𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐺, 𝑒𝑑𝑔𝑒 𝑖(𝑃𝑜𝑙𝑦𝑔𝑜𝑛))  

The robot is statically stable only when 𝑆𝑀 > 0. In dynamic processes, dynamic stability 

must be evaluated by calculating the Zero Moment Point (ZMP) or the rate of tilt angle change, 

combined with IMU data. The wheel group alternating support strategy designed in this paper 

aims to actively maintain a large support polygon, keeping 𝑆𝑀  above a safe threshold 

throughout the climbing process. 

To achieve precise tracking of the preset trajectory and accurate control of the motor driving 

torque, it is necessary to establish the system's kinematic and dynamic models. In kinematics, 

the D-H parameter method is used to establish coordinate systems, with the base at the body 

center and links at each wheel group joint. Deriving the forward kinematics equation relates 

joint variables such as wheel group speed and tensioning angle to the robot's overall pose 

(position, orientation), providing the basis for the inverse solution in multi-wheel-group 

coordinated trajectory planning. In dynamics, a system dynamic model is constructed based on 

the Lagrange equation, focusing on analyzing the force balance relationships during different 

phases such as wheel group contact with steps and lifting for obstacle crossing. This includes 

the robot's own gravity, inertial forces generated by motion, ground contact reaction forces, and 

motor driving torques, estimating the peak torque requirements for each joint. This provides 

theoretical support for motor selection and parameter tuning of the underlying PID controller. 
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In actual control, simplified forms of these models are used for real-time prediction and 

planning by the upper-layer Raspberry Pi decision core. 

3.3. Obstacle-Crossing Stability and Posture Adjustment 

During stair climbing, stability is the primary condition for ensuring task success and the 

robot's own safety. The special stair environment causes the robot's center of gravity position 

to continuously change with climbing height, which can easily lead to forward/backward or 

lateral tipping. Therefore, obstacle-crossing stability analysis and active posture adjustment 

strategies are key links in the overall design. The robot's posture adjustment strategy is shown 

in Figure 5, achieving stable climbing by dynamically adjusting support point positions. The 

robot's stability is quantitatively assessed by calculating the position of the center of gravity 

within the support polygon; this assessment metric is the static stability margin. For dynamic 

processes like climbing, professional concepts such as the Zero Moment Point (ZMP) must also 

be considered [8]. The core feature of the adaptive walking mechanism designed in this paper 

is multi-point alternating support, which actively maintains a large stable support area. 

Cooperating with the heterogeneous dual-core control system, the intelligent decision core 

solves relevant data in real-time, including body tilt angle and angular velocity information 

from the IMU, and support leg position information from joint encoders. Based on this data, it 

dynamically calculates the robot's real-time center of gravity and stability margin. The 

Raspberry Pi 4B then generates motion trajectories and posture compensation commands 

according to the calculation results and sends them to the real-time control core via the UART 

asynchronous serial port. The real-time control core communicates with peripherals like the 

IMU and encoders using the SPI interface, effectively ensuring high-speed acquisition of 

underlying sensor data. The real-time control core utilizes its high timer resolution to execute 

high-speed PID control algorithms, converting received commands into precise PWM driving 

signals for each joint motor, ultimately achieving motion tracking and dynamic stability. 

 

Figure 5. Posture adjustment strategy comparison diagram. 
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4. Design of the Heterogeneous Dual-Core Intelligent Control 

System 

4.1. Heterogeneous Dual-Core Hardware Architecture and Task Allocation 

The hardware architecture of the dual-core intelligent control system is the foundational 

platform for achieving high-performance control. The specific hardware configuration, task 

division, and key performance parameters are shown in Table 2. 

Table 2. Hardware task division of the heterogeneous dual-core control system. 

Core Type Processor Model 
Operating 

System 
Response Time 

Interface Connected 

To 

Real-Time 

Control Core 

STM32H743 (ARM 

Cortex-M7) 
RT-Thread 

Microsecond 

level (≤10 µs) 

Motor drivers, joint 

encoders, IMU 

Intelligent 

Decision Core 

Raspberry Pi 4B 

(ARM Cortex-A72) 

Linux + ROS 

Noetic 

Millisecond 

level (≤50 ms) 

RGB-D camera, Real-

Time Control Core 

This design adopts a heterogeneous dual-processor solution, with the real-time control core 

focusing on "fast response and precise execution" and the intelligent decision core focusing on 

"complex data processing and dynamic decision-making." Figure 6 visually presents the 

collaborative hardware foundation of the heterogeneous dual cores. 

 

Figure 6. Hardware architecture and task allocation diagram. 

The real-time control core uses an STM32H7 series microcontroller with an ARM Cortex-

M7 core. Its specific pin assignment and hardware connection design are shown in Figure 7. Its 

maximum main frequency can reach 480 MHz, and it possesses abundant timer/PWM output 

channels and nanosecond-level interrupt response capability, fully meeting the stringent "low 
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latency, high precision" requirements of underlying control. The core connects directly to 

hardware devices such as hub motor drivers, wheel pair encoders, and the IMU via high-speed 

General Purpose Input/Output (GPIO) and Serial Peripheral Interface (SPI). It runs underlying 

programs on the lightweight real-time operating system (RT-Thread) to receive speed/position 

feedback signals from wheel pair encoders, complete the closed-loop PID control of hub motors 

ensuring precise tracking of multi-wheel-group motion trajectories; and perform filtering 

preprocessing on the raw three-axis acceleration and angular velocity data collected by the IMU 

to reduce noise interference. It parses target posture commands and wheel group power 

distribution commands issued by the intelligent decision core, converting them into specific 

driving PWM signals to achieve coordinated motion control of each wheel group motor. 

 

Figure 7. Hardware diagram of STM32H743 core pins. 

The intelligent decision core is selected from the ARM Cortex-A series application 

processors, specifically the Raspberry Pi 4B. Its quad-core Cortex-A72 processor offers strong 

computing performance, capable of running the Linux operating system and ROS Noetic 

(Robot Operating System) smoothly, providing hardware support for deploying complex 

algorithms. The core is responsible for non-real-time but highly complex intelligent processing 

tasks. It receives color images and depth data from the RGB-D camera via a USB 3.0 interface, 

then fuses preprocessed IMU data and encoder feedback on actuator status information. Using 

multi-sensor data fusion algorithms, it constructs a "robot-environment" combined state model. 

The system can identify key environmental parameters such as stair slope, step height/depth, 

generate adaptive multi-wheel-group coordinated motion trajectories for the current 

environment, and immediately generate compensation commands if posture deviation risks are 

detected, sending them to the real-time control core. 

The two cores achieve bidirectional communication via a high-speed asynchronous serial 
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port (UART) at a data transmission rate of 115200 bps. This communication method forms a 

classic closed-loop solution for heterogeneous dual-core robots, enabling a 10 µs state data 

upload and a 50 ms command issuance response [4]. The real-time control core uploads state 

information such as motor speed, body tilt angle, and trajectory position collected by sensors 

every 10 µs, providing a dynamic data foundation for intelligent decision-making. The 

intelligent decision core issues updated motion and posture correction commands every 50 ms, 

which the real-time control core quickly responds to and executes. 

This separation of responsibilities avoids potential performance conflicts between real-time 

control and complex decision-making tasks within a single processor. Efficient communication 

achieves overall coordinated control, providing stable hardware support for the robot's stair 

climbing and environmental adaptation. 

4.2. Sensor Data Fusion and Environmental Modeling 

Accurate perception of the environment is a prerequisite for the robot's autonomous adaptive 

climbing. The multi-modal sensors on the robot provide complementary environmental 

information. The RGB-D camera acquires color images and depth information from the 

environment in front of the robot [10]. With the help of point cloud processing algorithms, stair 

surfaces can be segmented, and stair step heights and depths can be extracted to build a 

geometric model of the stairs ahead. The IMU provides the robot's body three-axis acceleration 

and three-axis angular velocity. Through attitude calculation algorithms (such as 

complementary filtering or Kalman filtering), the robot's pitch and roll angles relative to the 

direction of gravity can be estimated in real-time, which are key parameters for assessing body 

posture stability. In complementary filtering, the low-pass filter cutoff frequency for IMU 

accelerometer data is set to 5 Hz, and the high-pass filter cutoff frequency for gyroscope data 

is set to 0.5 Hz. By fusing attitude data with a weighting coefficient k=0.98, noise interference 

on tilt detection is effectively reduced. Joint encoders accurately feedback the rotation angle or 

extension length of each adaptive leg. Combined with the robot's kinematic model, the pose of 

the robot chassis relative to support points can be derived. 

The data fusion center on the Raspberry Pi 4B (intelligent decision core) deeply fuses visual 

data collected from the local RGB-D camera with the IMU attitude data and detailed encoder 

information preprocessed and acquired in real-time by the real-time control core (STM32H743) 

via the SPI bus [5], constructing an integrated robot-environment state model. The model 

flowchart is shown in Figure 8. 
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Figure 8. Flowchart of multi-sensor data fusion. 

4.3. Adaptive Motion Planning and Stability Control Algorithm 

Based on the integrated environmental state model, the core algorithms for adaptive motion 

planning and stability control operate. Motion planning generates a reference path for safely 

traversing all steps from the current position according to identified stair parameters (slope, step 

height/depth) and the robot's kinetic constraints, planning differentiated motion sequences for 

multiple wheel groups. As shown in Figure 9, to accurately convert the reference trajectory into 

motor operation commands, the system adopts a dual closed-loop control strategy. 

 

Figure 9. Flowchart of the dual closed-loop control. 

The trajectory planner determines the movement path (position and orientation) of the robot 

base and the motion sequence for adjusting each leg (when to lift, lower, and anticipate) based 

on the area [11]. Because the stair environment may have uncertainties, the planner needs online 

re-planning capability to cope with updated situations or emergencies. The stability control 

algorithm works closely with the planner, operating as a supervisory and compensation layer. 

It continuously monitors the real-time stability margin calculated from IMU data and the 

kinematic model, specifically as shown in Figure 10. The logic between the upper and lower 
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layers of the algorithm is annotated, indicating command interaction and compensation 

mechanisms between the two layers, reflecting the layered collaboration of the algorithm. 

 

Figure 10. Closed-loop diagram of adaptive motion planning and stability control algorithm. 

4.4. Experimental Verification 

To verify the performance of the adaptive stair-climbing robot designed in this paper in 

complex stair environments, a multi-scenario test platform was built. Tests selected common 

stair types in civil buildings and simulated extreme scenarios such as wet, slippery, and irregular 

steps. Test indicators included average climbing speed, stability margin, and continuous stair-

climbing success rate. Each group of tests was repeated 3 times, with the final result being the 

average value. The selection of test scenarios referenced the application requirements for 

elderly and disabled assistive robots. Specific test parameters and results are shown in Table 3. 

In the standard stair scenario, the robot achieved a 100% success rate, maintaining a stability 

margin above 20 mm. Through coordinated adjustment of multiple wheel groups, fluctuations 

in body tilt angle were controlled within ±3°, demonstrating good stability performance. In 

complex scenarios such as irregular and slippery stairs, the robot's average ascent speed 

decreased, but the stability margin still met safety requirements, with a continuous climbing 

success rate of no less than 90%. Experimental results indicate that the mechanical structure 

and heterogeneous dual-core intelligent control strategy designed in this paper can effectively 

adapt to different types of stair environments, verifying the effectiveness and practicality of the 

proposed solution. 

Table 3. Stair-climbing performance test results. 
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Test Stair Type 

Step 

Height  

(mm) 

Step 

Slope  

(°) 

Surface 

Material 

Average 

Climbing 

Speed  

(m/s) 

Stability 

Margin  

(mm) 

Climbing 

Success Rate  

(%) 

Residential 

Standard Stairs 
150 30 Concrete 0.22 28 100 

Public Building 

Wide Stairs 
180 35 

Ceramic 

Tile 
0.18 25 100 

Worn Irregular 

Stairs 

160 

(±15) 
32 Marble 0.15 22 97 

Simulated 

Slippery Stairs 
170 38 

Floor 

Tile 
0.13 20 95 

5. Conclusion 

This paper presents an adaptive stair-climbing robot based on heterogeneous dual-core 

intelligent control technology. It integrates a multi-wheel-group mechanical structure 

combining wheeled efficiency and tracked obstacle-crossing ability with a layered control 

system, addressing the pain point of poor adaptability of traditional robots in complex stair 

environments. The dual-core architecture balances real-time control and intelligent decision-

making, ensuring environmental perception accuracy. Experiments have verified the stability 

and practicality of the solution, providing an innovative solution for the development of mobile 

robots in complex terrains. 
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Abstract. With the increasing integration of large 

language models (LLMs) into intelligent vehicle 

cockpits, achieving efficient, accurate, and personalized 

interactions with long-term memory capabilities has 

become a key challenge. Existing vector retrieval 

methods suffer from context inflation issues, while 

static knowledge graphs struggle to capture the time-

varying nature of user preferences. This paper proposes 

the EchoKG framework, which for the first time 

mathematically models the Ebbinghaus forgetting curve 

as a dynamic weight mechanism for knowledge graph 

nodes, enabling the natural decay and reinforcement of 

user preferences. By introducing memory strength S and 

last access time, EchoKG dynamically manages the 

lifecycle of memories. Experimental results on the fully 

open-source dataset EchoCar-Public demonstrate that 

compared to MemoryBank, static knowledge graphs, 

and GPT-4o Memory, EchoKG reduces the average 

context length by 32%, increases the F1 score for intent 

recognition by 5.1%, and improves the personalized 

consistency score by 0.68 points, while maintaining a 

response latency within 800ms. 

 

Keywords: Large Language Model, Dialogue System, 

Knowledge Graph, Forgetting Curve. 

1. Introduction 

Intelligent cockpits are evolving from the traditional "command-execution" mode to the 

"proactive - empathetic" intelligent companion mode. The ideal in-car assistant not only needs 

to understand the current driving instructions (such as "turn on the air conditioner"), but also 

needs to have the ability of Long-Term Memory that spans time periods. For instance, when a 

user sets the air conditioner to 26℃ several times in a row during winter, the system should 

automatically recommend this temperature in the following winter and "forget" this setting in 

summer. This long-term personalized service based on historical interaction is at the core of 
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enhancing user stickiness and in-cabin experience [1]. 

At present, memory enhancement schemes based on large language models (LLMS) mainly 

face two major challenges. The first is the vector memory dilation and retrieval noise 

phenomenon. Methods represented by MemoryBank convert historical dialogues into vector 

storage [2]. With the increase of usage time, the scale of the vector library grows exponentially, 

which not only leads to an increase in retrieval Latency, but also introduces a large amount of 

irrelevant historical noise, occupies the limited Context Window of the LLM, and even triggers 

"hallucinations". Secondly, there is the rigidity of static knowledge graphs. Although 

knowledge graphs (KGS) can provide structured fact storage, traditional KGS are static. Users' 

preferences are dynamic and fluid (for instance, a user might shift from preferring "rock" to 

"light music"). Static KG has difficulty eliminating outdated information through the 

"forgetting" mechanism, leading to recommendation conflicts. 

In response to the above issues, inspired by cognitive psychology, this paper proposes the 

EchoKG framework. The main contribution is that the Ebbinghaus Forgetting Curve [3] was 

introduced into the memory management of the vehicle dialogue system for the first time, and 

the anthropomorification attenuation and enhancement of machine memory were achieved 

through mathematical modeling. A complete dynamic graph update and pruning algorithm for 

EchoKG was proposed. The graph structure was dynamically adjusted through memory 

Strength and Rehearsal, significantly reducing the context load while ensuring personalization. 

2. Related Work 

Early long-term memory methods mainly relied on rule-based Slot Filling, storing and 

retrieving key information through predefined structured fields. However, this method has 

obvious limitations in terms of expressive power and generalization. With the rise of the 

Transformer architecture, the memory mechanism based on vector retrieval Augmented 

Generation (RAG) has gradually become mainstream. By storing historical dialogue summaries 

in vector databases and retrieving them based on semantic similarity, more flexible long-term 

dependency modeling has been achieved [4]. 

However, methods such as Memory Bank will lead to a decline in index efficiency over long-

term operation due to the continuous accumulation of data volume, affecting the system 

response speed and quality. Works such as LongMem and LangMem have attempted to 

alleviate the problem of context redundancy through hierarchical storage and priority strategies 

[5], but they are still insufficient when dealing with changes in user preferences over time or 
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even instruction conflicts (such as users modifying previously given preferences). 

Meanwhile, knowledge graphs have long been used to enhance the knowledge understanding 

of dialogue systems due to their structured expression and explicit reasoning capabilities. For 

example, K-BERT significantly improved the accuracy of domain knowledge question 

answering by injecting knowledge graph triples into the input layer [6]. However, the existing 

work generally focuses on general encyclopedic Knowledge (World Knowledge), and there is 

still a lack of systematic research on how to construct and maintain user profile graphs that can 

be continuously updated over time and reflect users' dynamic preferences, especially in highly 

personalized continuous interaction scenarios such as vehicles, where there is even a blank. 

Furthermore, the exponential decay law of memory over time revealed by the Ebbinghaus 

forgetting curve has been used in recommendation systems to simulate user interest drift and 

has also been widely applied in the Spaced Repetition algorithm in educational software [7]. 

However, in the field of dialogue management of large models, there are no mature methods 

for applying it to dynamic memory pruning or priority reorganization yet. In conclusion, there 

is still much room for exploration in how to effectively integrate long-term memory, knowledge 

graphs, and human memory patterns to construct sustainable and evolving user-level dialogue 

memory [8,9]. 

3. EchoKG frame 

The overall architecture of EchoKG is shown in Figure 1 (a sketch, only describing the logic), 

and the system as a whole is composed of three closely collaborating modules. Firstly, the 

memory encoder and writer is responsible for parsing the natural language input into a 

structured "entity-relations-attribute" triplet and initializing the memory strength for the newly 

written preference information, providing a basis for subsequent dynamic evolution. Secondly, 

the Dynamic KG Core is implemented based on Neo4j. It maintains preference nodes with 

attributes such as timestamps, access frequencies, and creation times, and performs 

reinforcement and forgetting operations on the graph based on users' interaction behaviors, 

enabling it to reflect the long-term trends and immediate changes of users' preferences. Finally, 

the memory retrieval and enhancement generator retrives several most relevant subgraphs from 

the graph in the dialogue based on the current query, linearizes them and injects them into the 

language model to construct context inputs with more personalized user characteristics. 

In terms of user preference modeling, we have constructed a dynamic preference knowledge 

graph 𝐺 = (𝐸, 𝑅, 𝑃) , which includes a set of preference entities, a set of semantic relations, 
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and a set of dynamic attributes. For any preference node, we maintain its key attributes such as 

memory strength 𝑠 , last access time 𝑡𝑙𝑎𝑠𝑡 , recurrence times 𝑛 , and creation time. Take 

temperature preference as an example. A typical preference record can be expressed as: 

< 𝑈𝑠𝑒𝑟001, 𝑃𝑅𝐸𝐹𝐸𝑅𝑆𝑇𝐸𝑀𝑃, 24𝐶, {𝑆, 𝑛, 𝑡𝑙𝑎𝑠𝑡, 𝑡𝑐𝑟𝑒𝑎𝑡𝑒} > 

 

Figure 1:EchoKG framework Architecture diagram 

The dynamic attributes among them are used to continuously describe the evolution state of 

preferences during the system's operation. When a user frequently mentions a certain preference, 

its memory strength will be enhanced, while when the preference remains inactive for a long 

time, it will naturally decline over time. 

To simulate the forgetting mechanism of human memory, we combine the core idea of the 

Ebbinghaus forgetting curve and conduct a discrete modeling of it to adapt to the intermittent 

interaction mode in vehicle-mounted scenarios. In EchoKG, the temporal evolution of memory 

intensity depends on two key factors: one is the user's "review" behavior (i.e., the recurrence of 

preferences), and the other is the time interval since the last activation. Based on this, we update 

the memory intensity in the following form: 

𝑆(𝑡) = 𝑓(𝑛) ∙ 𝑔(∆𝑡) 

Here, 𝑓(𝑛) represents the enhancement effect that occurs with the increase in the number of 

reproductions, showing a marginal diminishing characteristic; And 𝑔(∆𝑡)  depicts the 

exponential decay process of memory over time. To provide a more explicit modeling form, we 

parameterized it in the experiment, making the memory attenuation more in line with the usage 

frequency and interest change patterns of real users: 
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𝑆(𝑡) = 𝑆0(1 + 𝑛)𝛼𝑒−𝛽∆𝑡 

Here, 𝑆0 represents the initial intensity, α controls the strengthening rate, and 𝛽 describes the 

attenuation rate. In this way, the system can automatically achieve the effect of "retaining 

important preferences for a long time and gradually fading outdated preferences" in long-term 

interaction. 

Overall, EchoKG effectively combines structured preference modeling, dynamic graph 

updates mechanisms, and human memory patterns, enabling the system to maintain 

personalized consistency while flexibly adapting to the natural changes in user interests. As a 

result, it demonstrates higher stability and intelligence in long-term interaction scenarios such 

as in-vehicle conversations. 

The retrieval module uses Cypher query statements to obtain nodes with 𝑆 > 1.0 and the Top 

-10 semantic similarity. The retrieved subgraphs are linearized into natural language prompt 

words. For example: Prompt: "User historical preference memory: [Air Conditioning 

temperature: 24 degrees (Strong preference)], [Frequently Heard singer: Eason Chan (Medium 

preference)]. Please reply to the user based on this". 

4. Experiments 

4.1. Dataset Construction 

To address the long-standing problem of scarce public data in the field of in-vehicle dialogue, 

we have built and open-sourced the EchoCar-Public dataset. Based on the systematic cleaning, 

integration and reconstruction of the existing multi-round dialogue resources, this dataset 

generates supplementary long-term preference scenarios through a large model, and finally 

forms a Chinese-English mixed dataset containing 15,800 rounds of dialogues. Among them, 

the English part is mainly derived from typical task-oriented corpora covering transportation, 

navigation and ancillary services such as MultiWOZ 2.4, SGD and KVRET [11-13]; The 

Chinese part integrates Chinese MultiWOZ and CarChat-1K, and utilizes approximately 5% of 

the large model to enhance the samples and expand the diversity of cross-round preference 

expressions and temporal dependencies. To evaluate the adaptability and forgetting mechanism 

of the model in long-term interaction, we deliberately injected preference conflict and 

correction events spanning different time spans (such as Day 1, Day 7, Day 30) into the dialogue, 

enabling the dataset to more comprehensively cover preference drift behavior in real scenarios.  
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4.2. Experimental Setup 

The experiment was carried out based on Qwen2-7B-Chat (4-bit quantization), and vector 

retrieval memory banks, static knowledge graph structures, long-term memory compression 

methods, and commercial closed-source memory mechanisms were selected as control schemes 

to comprehensively investigate the differences in efficiency, accuracy, and stability of different 

memory systems in vehicle scenarios. To achieve more identifiable comparisons, we 

comprehensively measure system performance by using indicators such as intent recognition 

F1, context length, personalized consistency, and response delay [14]. The degree of intent 

recognition reflects the semantic understanding ability of the model. The length of the context 

reflects the compression ability of different memory strategies on the input scale of LLMS. 

Personalized consistency is used to verify whether the response aligns with the user's historical 

preferences. Response delay measures the availability of a system in real-time interaction. 

4.3. Main Results 

The experimental results show that EchoKG demonstrates significant advantages in both 

efficiency and long-term stability. In terms of context management, as the graph can compress 

the original dialogue into discrete and structured preference nodes, the number of input tokens 

generated by EchoKG is only about half of that of traditional vector retrieval schemes, thereby 

significantly reducing the model inference cost and keeping the response delay at an acceptable 

low level for in-vehicle interaction. In terms of semantic understanding, the dynamic forgetting 

mechanism effectively eliminates outdated preferences, reduces noise interference, and makes 

the intent recognition performance superior to that of static graphs. It is also worth noting that 

in terms of the personalized consistency index evaluated manually, the performance of EchoKG 

is close to that of commercial closed-source memory systems, indicating that the introduction 

of a time decay mechanism helps the model form a preference retention behavior similar to 

human "familiarity" in long-term interactions. 

To further verify the long-term stability of the system, we constructed a 30-day simulated 

interaction scenario. The results show that traditional static graphs will continuously 

accumulate one-off preferences in the early stage, leading to structural redundancy. Over time, 

EchoKG will gradually weaken the memory intensity of low-frequency preferences and 

automatically perform pruning operations when the intensity drops below the threshold, 

keeping the scale of the spectrum always within a controllable range and being able to 

dynamically reflect the user's true long-term habits. This phenomenon verifies the rationality 

of modeling based on the Ebbinghaus forgetting curve and also indicates that introducing 
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psychological memory laws into the graph memory system has dual advantages in theory and 

practice. 

Table 1. The experimental results. 

Method Intention F1 Token Personalized consistency (1-5) MOS Delay (ms) 

Vanilla Qwen2 0.796 1980 2.58 3.34 670 

MemoryBank 0.837 2980 3.71 3.91 1280 

Static KG 0.854 1820 4.05 4.12 710 

EchoKG (Ours) 0.905 1340 4.73 4.79 780 

GPT-4o Memory 0.918 - 4.81 4.86 2200+ 

5. Discussion and Limitations 

While introducing a forgetting mechanism to enhance system efficiency, the high safety 

requirements of in-vehicle scenarios also impose additional constraints. For important 

information related to driving safety or emergency response, such as users' preferences for 

vehicle handling characteristics (such as brake sensitivity), emergency contacts, etc., their 

semantic attributes have a high degree of safety sensitivity and thus should not be weakened 

over time. Based on this, we designed and implemented the "Immortal Whitelist" mechanism 

in EchoKG, forcibly setting the attenuation coefficient beta to 0 for all attributes marked as 

Safety-Critical. Theoretically, it is necessary to ensure that such information has permanent 

memory weights in the graph, thereby achieving the non-forgeability of security semantics. 

On the other hand, the parameters alpha and beta in the forgetting curve have a decisive 

influence on the memory evolution process, and the preference patterns of different user groups 

may vary significantly in the time dimension. For instance, the preference switching frequency 

of young users is usually higher, which implies that a larger attenuation coefficient beta may be 

required in dynamic modeling. In contrast, elderly users with more stable preferences 

correspond to a slower rate of memory decline. The above phenomena indicate that fixed 

parameters are difficult to cover the heterogeneity of the real user group. Therefore, future work 

will extend to the parameter adaptive method based on Meta-Learning [15], enabling the 

forgetting model to continuously adjust according to the long-term behavioral characteristics of 

users, thereby achieving more refined personalized memory management. 

In addition, the current computing of EchoKG is mainly deployed at the edge nodes of the 

vehicle to ensure that the inference delay meets the real-time requirements of in-vehicle 
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interaction. However, the computing resources at the vehicle end are limited, while large-scale 

graph construction, attribute clustering, and cross-user knowledge mining are more suitable to 

be carried out in the cloud where resources are abundant. Therefore, we plan to further explore 

the "vehicle-cloud Federation" collaborative architecture: completing high-complexity graph 

enhancement and statistical modeling on the cloud side, and performing lightweight inference 

and local storage of privacy-sensitive information on the vehicle side, thereby achieving cross-

terminal knowledge fusion and dynamic synchronization while ensuring user privacy and 

system efficiency. 

6. Conclusions 

The EchoKG framework proposed in this paper innovatively utilizes the Ebbinghaus 

forgetting curve to solve the problem of long-term memory management in in-vehicle dialogue 

systems. Through mathematical modeling with dynamic weights, EchoKG significantly 

reduces computing resource consumption and response delay while maintaining high-precision 

personalized services. Experimental data show that this method has extremely high practical 

value in real vehicle scenarios. 
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Abstract. Human balance is a skill gradually 

established through a sensory-action-feedback loop, 

relying on repetitive training, trial-and-error 

mechanisms, and the dynamic plasticity of synaptic 

connections. In this process, sensory signals are 

continuously transmitted to the central nervous system, 

where stable motor paths are formed through learning, 

enabling action reuse without complex calculations. 

Inspired by this mechanism, this paper proposes a 

balance learning method based on brain-like spiking 

neural networks and dopamine-modulated synaptic 

plasticity for self-learning control of the classic inverted 

pendulum system. The method connects the one-hot 

encoded sensory neuron group with motor neurons and 

utilizes a reward-driven synaptic weight update 

mechanism to gradually master the stable control of the 

inverted pendulum without the need for prior models or 

training data. Unlike traditional control algorithms such 

as PID or LQR, this approach features biological 

realism, strong adaptability, and self-organizing 

behavior, providing a new perspective on bio-inspired 

learning strategies for artificial intelligence in 

continuous control tasks. 

 

Keywords: Spiking Neural Network; Dopamine-

modulated Synaptic Plasticity; Autonomous learning; 

Reward 

1. Introduction 

In traditional control engineering, control loops typically consist of several key modules: the 

internal and external state perception modules, the control decision module, and the system 

dynamic model module [1, 3]. The working principle of a controller is to predict the future 

expected state based on the system's current state and the acquired environmental information, 

and then generate control actions accordingly, ultimately driving the system to achieve the 
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desired behavior. In terms of control methods, model-based control relies on accurate modeling 

and simulation of the physical process to predict system behavior, while model-free control 

does not require an explicit dynamic model [4, 14], instead optimizing the control strategy 

through continuous interaction with the environment. 

In recent years, machine learning techniques, particularly deep reinforcement learning (Deep 

Reinforcement Learning, DRL), have been widely applied in control tasks such as industrial 

process control, autonomous driving decision-making, and robotic operations, due to their 

powerful ability to learn complex strategies in high-dimensional state spaces [7, 12]. However, 

although traditional artificial neural networks (ANNs) mimic the connections of biological 

neurons in structure, their computational units are essentially continuous numerical mappings. 

This fundamentally differs from the time-dependent computational mechanisms that biological 

neural systems rely on, which depend on spike transmission [13, 18-23]. To bridge this gap, 

Spiking Neural Networks (SNNs), as the "third generation of neural networks," have been 

proposed. SNNs use spike trains in the time domain to transmit information, more accurately 

simulating the way signals are transmitted between biological neurons [9, 10]. The advantage 

of SNNs lies not only in their ability to encode information in time, but also in their event-

driven sparse activation mechanism, which significantly improves energy efficiency, making 

them more suitable for embedded control scenarios with limited resources. 

To enable SNNs to learn effective control strategies, researchers have developed various 

reward-modulated synaptic plasticity mechanisms. For example: R-STDP (Reward-modulated 

STDP): Combines the spike-timing differences (STDP) of pre- and post-synaptic spikes with 

external reward signals to achieve fine-tuning optimization of the strategy.RM-STDP: Builds 

upon R-STDP by introducing a weight-dependent multiplicative modulation factor to enhance 

the stability of the training process and the generalization ability of the strategy [9, 24-27].TD-

STDP: Introduces the temporal difference error from reinforcement learning into the synaptic 

learning process and uses an eligibility trace mechanism to address the reward delay issue. 

Although mechanisms such as R-STDP, DA-STDP, and TD-STDP have initially established 

a connection between synaptic plasticity and environmental rewards, they still have limitations 

in terms of biological realism, effective handling of delayed rewards, and adapting to dynamic 

task feedback. R-STDP mainly controls and amplifies the synaptic update based on 

instantaneous reward signals, making it difficult to effectively cope with situations where 

reward signals are significantly delayed [16, 17]. The DA-STDP model only establishes a 

weight update mechanism between pre- and post-synaptic spikes and fails to capture delayed 



Research on Bio-inspired Self-balancing Control Based on LIF Network 

26 

rewards that appear several seconds after the behavior [28-32]. 

In contrast, DE-STDP (Dopamine-Eligibility STDP) shows greater potential in terms of 

biological plausibility and mechanism consistency [8, 33]. This mechanism uses dopamine (DA) 

concentration as a dynamic modulation factor and introduces the "eligibility trace" variable, 

coupling the local plasticity of STDP with the global reward signal reflected by dopamine 

concentration, giving synaptic weight changes "causal controllability" over time. This not only 

naturally simulates the core function of dopamine in reward-driven learning in biological neural 

systems, but also eliminates the need for external TD error calculation modules. The key feature 

of DE-STDP lies in its temporally separated weight update mechanism: STDP determines the 

possible direction of weight change based on spike timing differences (eligibility trace). The 

reward gating is then executed, with dopamine signals deciding whether these preset changes 

are actually implemented. This "trace-reward" pairing mechanism aligns with the time-scale 

differences between plasticity events and reward signals in biological systems [11, 15]. This 

two-stage regulation strategy makes DE-STDP advantageous in tasks involving sparse 

reinforcement signals, significant reward delays, or the need for local plasticity adjustments. 

Unlike current mainstream control methods based on reinforcement learning or deep neural 

networks, this study emphasizes exploring the synaptic learning rules and biological 

information processing mechanisms achievable by the nervous system itself, and focuses on the 

possibility of efficient, unsupervised balance learning in low-dimensional state spaces. The 

research not only validates the practical feasibility of DE-STDP in dynamic control tasks but 

also provides theoretical foundations and potential technical pathways for promoting brain-like 

computational paradigms in practical control systems. 

2. Methodology 

2.1 Network Structure 

To achieve reinforcement learning control for the inverted pendulum system, this study 

constructs a two-layer spiking neural network consisting of an input layer and an output layer. 

The network structure is simple, with clear connections, providing good biological 

interpretability and hardware deployment potential. 

The input layer consists of 24 Leaky Integrate-and-Fire neurons, which receive discretized 

encoded information of the environment's state. Specifically, the system's four-dimensional 

state variables (cart position, cart velocity, pole angle, and angular velocity) are discretized into 

several intervals and mapped to the 24 neurons using one-hot encoding. This ensures the 



Zhixin Yan, Jin Li, Junbang Jiang, Shanmengdai Luo, Lifang Huang 

27 

unambiguous transmission of state information and the capability for spike-based expression. 

The output layer contains 2 neurons, each representing one of the two discrete control actions 

(applying force to the left or applying force to the right). The network uses a fully connected 

structure, meaning each neuron in the input layer is synaptically connected to all neurons in the 

output layer. 

To reduce computational complexity and enhance the biological plausibility of neuron 

behavior, this study adopts the classic Leaky Integrate-and-Fire model for neuron modeling 

[37-39]. In this model, each neuron contains only one state variable—its membrane potential 

𝑉(𝑡) , and its dynamic behavior follows the differential equation: 

𝑑𝑉

𝑑𝑡
= −

𝑉(𝑡) − 𝑉_𝑟𝑒𝑠𝑡

τ_m
+

𝐼_𝑠𝑦𝑛(𝑡) + 𝐼_𝑒𝑥𝑡(𝑡)

𝐶_𝑚
 

In this model, V_rest represents the resting potential, τ_m is the membrane time constant, 

and 𝐶_𝑚  is the membrane capacitance. 𝐼_𝑒𝑥𝑡(𝑡) represents the externally injected current, 

primarily coming from the state perception input. 𝐼_𝑠𝑦𝑛(𝑡)  is the total synaptic current, 

triggered by synaptic inputs from within the network. When the membrane potential 𝑉(𝑡) 

exceeds the threshold voltage 𝑉_𝑡ℎ, the neuron is considered to fire a spike and undergoes a 

potential reset followed by a refractory period [4]. 

This network architecture fully integrates the fundamental characteristics of biological neural 

systems, while maintaining high engineering feasibility, providing a solid foundation for 

subsequent control learning based on reward-modulated spiking plasticity rules. 

2.2 State Discretization and One-Hot Encoding 

The spikes generated by the input neurons are used to encode the observation states of the 

inverted pendulum system. Each observation variable of the system (including the cart position 

𝑥、velocity 𝑣、pole angle 𝜃 and angular velocity 𝜔) is mapped to an integer index according 

to the following rule[32]：   

id_obs= {

0,

floor(
x-xmin

∆x
),

Nstates,obs-1,

                                                     

In this context ， ∆x  is the width of each interval, and 𝑜𝑏𝑠𝑚𝑖𝑛  and 𝑜𝑏𝑠𝑚𝑎𝑥  are the 

discretization limits for the variable. The total number of discrete states for each variable is 

given by：Nstates,obs=ceil(
x-xmin

∆x
) ，The combination of the four observation variables forms a 

complete state (idx,idv,idθ,idω)，The total number of states in the system is: 

obs ≤ 𝑜𝑏𝑠𝑚𝑖𝑛 

𝑜𝑏𝑠𝑚𝑖𝑛 < obs < 𝑜𝑏𝑠𝑚𝑎𝑥 

obs ≥ 𝑜𝑏𝑠𝑚𝑎𝑥 
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Nstates,total = Nstates,x*Nstates,v* Nstates,θ * Nstates,ω 

To achieve a unique representation for each state, each group of states is encoded by a set of 

ninput input neurons. Therefore, the total number of neurons in the input layer of the SNN is: 

Ninput neurons= Nstates,total * ninput 

When a specific state is input, only the ninput neurons corresponding to that state will spike, 

while all other neurons remain silent. This method is a classic example of one-hot encoding 

[30,34], which is commonly used in machine learning to represent categorical variables. For 

the discretization of the angle θ ： 

the central balanced region [-π/12, π/12]（equivalent to [-15°, 15°]）is divided into 10 

subintervals； 

The other unbalanced regions (such as [-π/2, -π/12] and [π/12, π/2]) are divided into coarser 

subintervals. 

This type of "sparse-dense-sparse" partitioning helps to enhance the system's resolution in 

the critical balanced region, thereby improving control performance. 

2.3 Reward Function Design 

Intuitively, the reward function should reflect the core objective of the control task, which is 

to maintain the pole in the upright position. Since the control outcome depends on the action 

selected and executed in the current state of the system, when an action guides the system 

toward a direction more favorable for achieving this goal, it should be assigned a positive 

reward. To enhance the Spiking Neural Network (SNN) controller's responsiveness to system 

dynamics, various reward functions are designed based on the evolution of the state. As the 

reward function progresses from R1 to R2，the perceptual variables introduced become more 

complex, and the feedback mechanism transitions from a single physical quantity to a 

composite trend judgment. This allows the system to become more sensitive to "balance 

tendency" during the training process [35,40]. The second reward function R1 is based on the 

trend of angular velocity changes between two time steps. 

                                  R1(ω
old

,ωnew)= {
1,

1,

-1,

                                                                              

In this context, the first term checks whether the direction of the angular velocity has reversed, 

which indicates that the system is attempting to correct the existing rotational trend. The second 

term encourages a reduction in angular velocity, reflecting the control action's effect in 

𝜔𝑜𝑙𝑑 ∗ 𝜔𝑛𝑒𝑤 < 0 

|𝜔𝑛𝑒𝑤| > |𝜔𝑜𝑙𝑑| 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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suppressing the rotation amplitude. If neither of these conditions is met, the action is considered 

ineffective, and a punitive reward of -1 is applied to the system. 

R2 builds upon R1 by further considering the trend in the direction of the angle to improve 

the system's overall ability to judge the return to equilibrium. It is defined as follows: 

        R2(ωold,ωnew,θold,θnew)= {

R1(ω
old

,ωnew),

1,

-1,

                                 （3）                          

The logic of this function emphasizes that when both the angular velocity and the angle 

direction point toward the "return to vertical" trend, a positive reward should be given; 

otherwise, a penalty is applied. Particularly in some cases, if the angle θold and the angular 

velocity ωold  have opposite signs, it indicates that the current angular velocity is actually 

decreasing the tilt angle, meaning the action itself has a positive effect. In such a case, simply 

using the "direction reversal or deceleration" criterion in R1  is insufficient to accurately 

evaluate the system's evolution. Therefore, R2  further introduces a check on the sign 

combination of θnew and ωnew:if the signs of θnew and ωnew are opposite, it indicates that the 

new state is still maintaining the ideal trend of "angular velocity correcting the angle," and a 

positive reward is given; otherwise, the action is considered detrimental to system balance, and 

a punitive reward of -1 is applied. Compared to R1, R2 can more accurately recognize the actual 

contribution of the agent's action to the "system's return to balance" and provides more 

directional feedback signals during the SNN learning process. 

2.4 DE-STDP 

Since the dynamics of intracellular processes triggered by STDP and dopamine (DA) are not 

yet fully understood, this paper proposes a simplified phenomenological model to characterize 

the basic mechanism by which DA regulates STDP plasticity. Referring to the method by i et 

al. (2004) [46], the paper uses two phenomenological variables to describe the state of each 

synapse: the synaptic weight (s) and the enzyme activity variable (c) closely related to synaptic 

plasticity, such as the autophosphorylation of CaMK-II (Lisman, 1989), oxidation reactions of 

PKC or PKA, or other slower biochemical processes. These processes together form the so-

called "synaptic tag" [38-41]. 

The basic dynamics of the model are described as follows: 

                                                         ċ=-
c

τc
+STDP(τ)δ(t-tpre/post)                                           

Here, ( \delta(t) ) is the Dirac delta function, which is triggered when the pre- or post-neuron 

fires at the times ( t_{\text{pre}} ) or ( t_{\text{post}} ), causing the variable ( c ) to be updated 

𝜃𝑛𝑒𝑤 ∗ 𝜔𝑜𝑙𝑑 > 0 

𝜃𝑛𝑒𝑤 ∗ 𝜔𝑜𝑙𝑑 ≤ 0 and 𝜃𝑛𝑒𝑤 ∗ 𝜔𝑛𝑒𝑤 < 0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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according to the STDP curve (Figure 1b). To clarify the mathematical nature of the STDP 

mechanism, the following model function is used to describe the synaptic timing-dependent 

plasticity changes [2, 47]: 

                                                  W(∆t) {    
A

+
e

(-
∆t

τ+) 
 ,

-A
-
e

(
∆t

τ-) ,

                                                                    

∆t=ti-tj  represents the time difference between the postsynaptic and presynaptic neuron 

spikes, with A
+

 and A
-
 representing the maximum adjustment amplitudes for long-term 

potentiation (LTP) and long-term depression (LTD), respectively, and τ+ 、 τ-  being the 

corresponding time window constants. This function characterizes the update magnitude of the 

synapse at different time differences, reflecting the fundamental principles of STDP. 

The accumulated "plasticity potential" of the variable ccc only influences the synaptic weight 

sss when the DA concentration d > 0, enabling synaptic strengthening or weakening. Therefore, 

c(t) is considered as the "plasticity trace" or "eligibility trace" of the synapse, a concept 

introduced by Houk, Adams, and Barto (1995) [43-46]. Additionally, the dynamics of DA are 

described by the following equation: 

                                                    ḋ=-
d

τd
+DA(t)                                                 

Here, τd  is the dopamine (DA) uptake time constant, and DA(t) represents the DA input 

generated by dopaminergic neuron firing in brain structures such as the ventral tegmental area 

(VTA) and the substantia nigra compacta. In this study, τd = 0.01 s，s is set to reflect the rapid 

clearance of DA in physiological processes. To better simulate the phasic and tonic patterns of 

DA, and in line with the dopamine encoding logic shown in Figure 1, when the system receives 

a reward (reward = 1), DA(t) is set to 0.05 μM, corresponding to the phasic activation triggered 

by reward in Figure 1(a) or the activation after conditioned stimulus predicts a reward in Figure 

1(b). In the absence of a reward or with a negative reward (reward = -1), DA(t) is maintained 

at a baseline level of 0.001 μM, corresponding to tonic inhibition during the reward absence 

shown in Figure 1(c). At the same time, the background DA concentration is incorporated into 

the STDP weight update mechanism, represented by the following formula:： 

ṡ=c(d-d_baseline) 

Here, d_baseline = 0.005 μM represents the background DA level of the system. This 

mechanism makes the synaptic potentiation process more sensitive to increases in DA 

concentration, while it becomes less likely to produce reinforcement effects when the DA level 

if ∆𝑡 >0 

if ∆𝑡 <0 
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is below the baseline, helping to suppress the phenomenon of false reinforcement. 

 

Figure 1. dopamine reward rule 

In the inverted pendulum control system, the learning and reward mechanism is similar to 

the dopamine response logic shown in Figure 1. When the system successfully maintains 

balance, it corresponds to the reward activation in Figure 1(a), where dopamine activity in the 

neurons increases, reinforcing the successful balancing action. As the system learns, if the 

inverted pendulum has already learned the relationship between specific control signals and 

successful balance, these signals become conditioned stimuli, similar to the situation in Figure 

1(b), where neurons respond to the conditioned stimulus in advance, without waiting for the 

reward to arrive. Eventually, when the system can predict the reward through the conditioned 

stimulus, the neuron’s response becomes more stable, as shown in the trough in Figure 1(c), 

indicating that the system has learned how to efficiently and automatically maintain balance, 

without relying on every reward feedback. This learning process makes the inverted pendulum 

system more independent, enabling it to maintain balance more stably. 

In summary, the model reasonably integrates the millisecond-scale synapse-specific STDP 

with the second-scale behavioral feedback in terms of timescale differences, as reflected in the 

dopamine encoding of reward timing in Figure 1. Although there is currently no direct 

experimental evidence to prove or disprove this model, it provides a clear, testable theoretical 

framework for exploring the regulatory mechanism of DA in STDP. 
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3. Results    

3.1 Experimental Environment 

The Cart-Pole system is one of the most classic control problems in reinforcement learning 

and is widely used to evaluate the performance of various control algorithms. In recent years, 

many studies based on Spiking Neural Networks (SNNs) have also used this system as a 

platform for algorithm testing [35,42]. This task can be described as follows: a cart and a rod 

connected by a hinge form the system, with the rod being able to rotate only in the plane 

perpendicular to the ground. The cart (Fig. 2) moves along a frictionless horizontal track, and 

the control agent must choose an action in each frame: apply a force to the left or to the right. 

The chosen action will affect the dynamics of the entire system, with the control objective being 

to keep the rod upright for as long as possible without becoming unstable. 

In the MuJoCo simulation environment, decisions are made every 16 milliseconds. The 

observed system state includes: 

The position of the cart: x, in meters;     

The velocity of the cart: v = 
dv

dt
, in meters per second; 

The angle of the rod: θ, in radians (usually referenced to the vertical direction);     

The angular velocity of the rod: ω = 
dθ

dt
, in radians per second. 

The simulation will terminate when any of the following conditions are triggered: 

Rod tilt: The absolute value of the rod's angle exceeds 15°. 

Cart out of bounds: The position of the cart exceeds the track boundaries of -2.0 meters to 

2.0 meters. 

 

Figure 2. Cart and pole 
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3.2 Experimental Plan 

In this experiment, the initial network weights are set to small random values, and the Spiking 

Neural Network (SNN) learns online through continuous interaction with the environment. The 

system's learning objective is to continuously keep the rod within a specified angle threshold 

range, i.e., in the "balanced state," for each episode until the cart exceeds the track boundary, 

which is considered a successful episode. The training process consists of 200 episodes. To 

evaluate the model's stability and generalization ability within a local time window, this paper 

introduces a sliding window success rate metric. Specifically, it is defined as the proportion of 

episodes within a sliding window of fixed length (20 episodes) where the number of balanced 

steps exceeds 7000 steps. This metric is considered the probability of "success" within the 

window. It dynamically reflects the phase effectiveness of the strategy and the stability 

improvement during the convergence process. To comprehensively evaluate the performance 

of different STDP mechanisms, all employing the reward function defined in R2  ,the 

experiment compares the training performance of three plasticity rules: R-STDP (basic version), 

DA-STDP (with dopamine signal), and DE-STDP (with error and dopamine signal). 

3.3 Experimental Results and Analysis 

3.3.1 Evolution of Balance Steps During Training 

 

Figure 3. the comparison of performance for the three different STDP mechanisms 
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Fig. 3 shows the evolution of the number of balance steps per episode during the training 

process under three different STDP learning rules. R-STDP exhibits a significant training delay, 

with a notable improvement occurring only after around the 100th episode. In contrast, DA-

STDP and DE-STDP quickly converge around the 110th episode, with DE-STDP 

demonstrating a strong learning capability in the early stages and maintaining the highest 

stability after convergence. 

As shown in the figure, under DE-STDP modulation, the number of balance steps in the SNN 

during the CartPole task evolves over the course of training. In the initial phase (approximately 

the first 100 episodes), the SNN struggles to maintain the rod's stability, demonstrating a clear 

exploration phase. However, as training progresses, the synaptic connections are gradually 

optimized under DA modulation, and the system's balancing ability improves significantly. DE-

STDP outperforms both R-STDP and DA-STDP in terms of convergence speed and stability, 

while DA-STDP shows a higher success rate and better sustained balance ability compared to 

R-STDP in the later stages. 

3.3.2 Evolution of Maximum Angle During Training 

This experiment uses the "maximum angle per episode" as a core observation metric to 

compare the training performance of R-STDP, DA-STDP, and DE-STDP in reinforcement 

learning tasks. By analyzing the fluctuations of the maximum angle over 200 episodes, the 

convergence and stability of different mechanisms are evaluated. From the experimental curves, 

the performance differences among the three STDP mechanisms are significant: R-STDP 

remains within a large oscillation range of -15° to 15° throughout the 200 episodes, with the 

system continuously cycling between "exploration and loss of control." This occurs because it 

relies solely on the temporal correlation between pre- and post-synaptic neurons, without 

considering "reward delay" or "error feedback," leading to an inability to establish a stable 

"action-reward" relationship. Its variance is 112.39, indicating large fluctuations. 

DA-STDP, through dopamine encoding of the "reward prediction error," shows phase-wise 

convergence. The fluctuations in the first 50 episodes are similar to R-STDP, but after the 75th 

episode, the oscillation amplitude gradually decreases. After the 125th episode, it stabilizes 

between -5° and 10°. Although there is some convergence, due to the unresolved "temporal 

mismatch between actions and delayed rewards," there is still some fluctuation in the later 

stages. Its variance is 116.38, with reduced volatility compared to R-STDP. 

DE-STDP performs the best. There is some fluctuation in the first 50 episodes, but after the 

75th episode, the oscillation amplitude rapidly narrows. After the 125th episode, it stabilizes 
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between -5° and 5°, and approaches 0°, achieving stable angle control. Its variance is 55.62, 

indicating a more stable learning process. Overall, R-STDP performs the worst due to the lack 

of adaptation to reward delay, DA-STDP shows improvement but with limited convergence, 

and DE-STDP excels in both convergence speed and stability, providing a more efficient STDP-

based reinforcement learning framework. 

 

Figure 4. shows the comparison of performance for the three different STDP mechanisms, 

illustrating the fluctuations of the maximum angle over 200 episodes. 

3.4 Summary 

This paper presents and implements a biologically-inspired phenomenological modeling 

approach focused on dopamine-modulated, time-dependent synaptic plasticity mechanisms, 

aiming to explain how delayed rewards at the behavioral level can lead to adjustments in 

synaptic strengths at the neural synapse level. The model draws from the ideas proposed by 
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Izhikevich et al., with the core concept being the introduction of two synaptic variables: 

synaptic weight (s) and the eligibility trace variable (c). The model is biologically grounded, 

combining the weight potential change (STDP rule) triggered by spikes with the delay 

mechanism of reward signals. This method is particularly suited to address a common issue in 

reinforcement learning — the delay of rewards relative to the timing of neural firing behaviors. 

Additionally, the DA signal in the model is expressed in both baseline and phasic forms, with 

the sensitivity of weight adjustments under different DA concentrations enhancing the system's 

ability to differentiate environmental feedback and avoid erroneous reinforcement. This 

strategy effectively resolves the insensitivity to delayed rewards found in traditional STDP 

models, offering enhanced learning stability and biological plausibility. In conclusion, this 

approach provides a reasonable and experimentally testable modeling framework for synaptic 

learning mechanisms in neuromorphic reinforcement learning, especially suited for adaptive 

behavioral learning systems in delayed reinforcement scenarios. 
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Abstract. Honey pot contract operation code sequences 

exhibit strong concealment, significantly increasing 

detection complexity. To address this, this study 

proposes a fine-grained detection method based on 

LSTM and Fuzzing. By analyzing frequency 

differences across operation codes in different honey 

pot contract types, we calculate their occurrence rates 

and assign high initial weights to high-frequency 

operation codes. The weight mechanism is then 

integrated into the LSTM model to calculate operational 

code contribution levels and importance scores, 

enabling extraction of high-scoring critical operation 

codes. The research employs Fuzzing fuzz testing 

technology to generate initial test case sets and defines 

their deconstruction methods. Using case identifiers and 

functional codes, we validate interaction logic 

vulnerabilities in honey pot contracts through mutation 

factor probability matrices. By constructing source code 

graph structures using critical operation codes and 

interaction logic vulnerabilities, we update and 

aggregate vector nodes with global accumulation 

pooling functions to generate graph-level vectors. 

These graph-level vectors are then fed into graph 

attention networks, with cross-entropy loss functions 

jointly determining honey pot contract types. Test 

results demonstrate that the proposed method achieves 

sub-3 false positives for six honey pot contract types, 

demonstrating high precision in fine-grained detection. 

 

Keywords: LSTM Model; Fuzzing Testing; Smart 

Contract Honeypot; Fine-grained Detection 

1. Introduction 

Honeypot contracts, a novel type of smart contract emerging in recent years, differ from 

traditional vulnerability contracts and stealth contracts. They employ deceptive tactics like 
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fabricated funding pools and conditional locking mechanisms to infiltrate target users and 

devices, ultimately stealing assets or tampering with data, posing significant security risks. 

Current detection methods primarily rely on control flow matching, analyzing logical trap 

timing patterns through symbolic code execution and identifying vulnerabilities via state space 

evolution. However, this approach fails to comprehensively cover attack paths, resulting in high 

false positive rates. Therefore, there is an urgent need for a high-precision detection method to 

mitigate honeypot contract attacks. 

In current research on contract vulnerability detection, scholars have proposed various 

methodologies. Specifically, Reference [1] employs entity-relation-entity triplet embedding to 

extract variable features, combines neural networks with bidirectional long short-term memory 

networks to model global temporal dependencies, and utilizes SoftMax classifiers for 

vulnerability classification. While this approach visualizes critical code segments through 

weight distribution for rapid root cause identification, it struggles with dynamic logic 

processing and often misses context-sensitive vulnerabilities. Reference [2] constructs program 

dependency graphs based on contract features, concatenates semantic features via graph 

convolutional networks for vulnerability classification. This method effectively reduces sample 

data size while preserving critical code segments and lowering computational complexity. 

However, its slicing granularity control introduces redundant information that disrupts key 

dependency chains, thereby increasing detection errors. 

Furthermore, most existing research focuses on general vulnerability detection, lacking 

specialized analysis methods for the unique logical traps and interactive deception mechanisms 

of honeypot contracts. Honeypot contracts often embed covert malicious logic within normal 

business processes, making it difficult for traditional static analysis and dynamic execution 

methods to capture their coordinated attack behaviors across contracts and transactions. 

Therefore, a hybrid detection framework combining temporal modeling and fuzz testing has 

become an important direction for improving detection accuracy. 

Building on the aforementioned research context, this study employs LSTM and Fuzzing 

techniques to conduct granular detection of honeypot contracts, thereby providing a security 

solution with low false positives and high coverage for the blockchain ecosystem. 

2. Technical Framework and Research Overview 

2.1 Evolution of Smart Contract Security Detection Techniques 

The field of smart contract security detection has evolved from early rule-based pattern 
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matching into a comprehensive system integrating static analysis, dynamic testing, and machine 

learning. Static analysis methods, such as symbolic execution and formal verification, can 

systematically traverse the contract state space but face the path explosion problem when 

dealing with complex control flows and external calls. Dynamic analysis methods, particularly 

fuzzing, trigger runtime exceptions by generating random or semi-structured inputs, yet their 

effectiveness heavily depends on the design of initial seeds and mutation strategies. In recent 

years, data-driven methods represented by deep learning have provided a new paradigm for 

contract security analysis. These methods can automatically learn vulnerability representation 

patterns from vast amounts of contract code, significantly enhancing the automation and 

generalization capabilities of detection. 

2.2 Key Advances in Deep Learning for Contract Security Analysis 

In the process of applying deep learning to contract security, model architectures have 

evolved from sequence models to graph neural networks. Sequence models represented by 

LSTM and BiLSTM can effectively capture long-range dependencies in opcode sequences but 

have limitations when processing structured semantics across functions and contracts. Graph 

Neural Networks (GNNs), by abstracting contracts into control flow graphs, data flow graphs, 

or hybrid graph structures, better preserve the topological semantics of code and have 

demonstrated excellent performance in detecting vulnerabilities such as reentrancy and 

improper access control. However, most existing methods treat contracts as static code for 

analysis and fail to fully consider the dynamic nature of interactive logic and state evolution, 

which is precisely the core mechanism by which honeypot contracts achieve deception. 

2.3 Special Challenges in Honeypot Contract Detection 

The detection of honeypot contracts faces three core challenges: 

(1) High Concealment: Malicious logic is often disguised within normal business code, 

harmless state variables, or compiler features, making it difficult to identify through syntax or 

simple patterns. 

(2) Interaction Dependency: Attack triggers usually depend on specific sequences of 

external calls or state conditions; single-dimensional code analysis cannot reconstruct the 

complete attack chain. 

(3) Adversarial Evolution: Honeypot designers actively evade known detection patterns 

(e.g., replacing high-frequency opcodes, control flow obfuscation), requiring detection methods 

to possess continuous adaptation capabilities. 
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Current methods based on control flow matching or symbolic execution can identify some 

logic traps but struggle to achieve high-precision, fine-grained classification and root cause 

localization of honeypots. 

2.4 Overall Technical Framework of This Paper 

To address the aforementioned challenges, this paper proposes a three-layer integrated fine-

grained detection framework of "Feature Screening - Interaction Verification - Graph Structure 

Classification," as shown in Figure 1. 

 Graph Structure Construction & Graph Attention Network Classification (GAT)

 Output: Honeypot Contract Type & Fine-Grained Results

Risk-Guided Fuzzing for Interactive Logic Vulnerability Mining

Weighted LSTM-based  Key Opcode Screening Module (KOLSTM) 

Input: Contract Bytecode Sequence

 

Figure 1. The Proposed Fine-Grained Honeypot Contract Detection Framework 

The core innovations of this framework are: 

(1) Introducing an opcode weighting mechanism that combines frequency statistics with 

semantic importance to enhance LSTM's sensitivity to potential malicious code. 

(2) Designing a risk-guided fuzzing strategy that uses key opcodes to direct mutation, 

enabling in-depth testing of interactive logic. 

(3) Constructing an "opcode-vulnerability" association graph that integrates static code 

features with dynamic interactive behaviors, achieving end-to-end fine-grained classification 

through a Graph Attention Network. 

2.5 Comparative Advantages Over Existing Methods 

Compared to traditional methods, the proposed framework offers the following advantages: 

(1) Comprehensive Coverage: It combines code sequence analysis with interactive behavior 
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verification, avoiding blind spots inherent in single-perspective detection. 

(2) Strong Adaptability: Through dynamic weight adjustment and feedback-driven fuzzing, 

it can adapt to the adversarial evolution of honeypot contracts. 

(3) High Interpretability: The processes of key opcode screening and graph structure 

construction provide traceable semantic evidence for detection results, aiding security analysts 

in root cause localization. 

(4) This framework provides a closed-loop solution for honeypot contract detection, 

spanning from feature extraction and behavior verification to structural classification, laying a 

theoretical foundation for the method design and experimental validation in subsequent 

chapters. 

3. Design of Fine-grained Detection Method for Honeycomb 

Contract 

3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM 

Since different types of honeypot contracts contain distinct operation codes with varying 

frequencies, we first calculate the average occurrence frequency of each operation code within 

the contracts, then assign higher initial weights to high-frequency operation codes [3]. The 

calculation formula is as follows: 

𝑓𝑝 = (𝛼𝑝||𝛽) + (𝑔||𝑣) 

𝑤𝑝 =
𝜕‖𝑒‖2

2

𝑓𝑝𝑊𝑜
 

In the above expression, the notations are defined as follows: 𝛼𝑝 denotes the base distribution 

of operation 𝑝 in the contract, 𝛽 denotes the null string used for encoding in the contract, 𝑔 

denotes the actual hidden code, 𝑣 denotes the state variable, 𝑓𝑝 denotes the occurrence count of 

operation 𝑝, 𝜕 denotes the call address of the target account, 𝑒 denotes the conditional jump 

instruction, 𝑊𝑜 denotes the hidden state update parameter, and 𝑤𝑝 denotes the initial weight of 

operation 𝑝. 

The weight initialization strategy draws inspiration from the TF-IDF concept in information 

retrieval, adapted for opcode sequence analysis. In honeypot contracts, frequently appearing 

opcodes (e.g., CALL, SELFDESTRUCT, JUMPI) are often associated with sensitive behaviors 

such as fund transfer and conditional jumps, yet their importance varies significantly across 

contract types. Therefore, this paper considers not only frequency but also introduces a 
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“contract discriminability” factor to prevent commonly occurring opcodes (e.g., PUSH, DUP) 

from dominating model attention due to their universal high frequency. In practice, if an opcode 

appears frequently across most contracts, its initial weight is appropriately attenuated, thereby 

focusing more on opcode patterns distinctive to honeypots. 

In conventional Long Short-Term Memory (LSTM) models, an operation code weight 

mechanism is introduced to develop an enhanced long short-term memory network called 

KOLSTM. By implementing a weighted update strategy for input and hidden gates, the system 

calculates the weight contribution of high-frequency operation codes, as shown in the following 

formula: 

𝑦𝑝 = 𝑠𝑖𝑔 𝑚𝑜𝑑 (𝑙𝑜𝑔 (
𝐷

𝐷1 + 1
) 𝑢 + 𝑤𝑝) 

In the above expression, 𝐷 denotes the opcode vector input at the current moment, 𝐷1 refers 

to the output of the forgetting gate, 𝑢 represents the proportion of the cell state output relative 

to the hidden state, and 𝑦𝑝 stands for the weight contribution quantization value corresponding 

to operation 𝑝. 

The importance score is calculated based on the weight contribution of the operation code 

during model training, as shown in the following formula: 

𝑎𝑝 =
∑ 𝑦𝑝 • 𝐼𝑛

𝑝=1

𝜃ℎ − 𝑗𝑜
 

In the above expression, 𝑛 denotes the number of contracts, 𝐼 represents the indicator 

function, 𝜃ℎ represents the word vector expression of the weighted average operation code; 𝑗𝑜  

represents the adjustable parameter matrix; and 𝑎𝑝 represents the importance evaluation score 

of the operation code 𝑝. 

Based on the importance score of operation codes, the 𝑆 top-performing codes are selected 

as the construction operation codes, followed by vulnerability mining in contract interaction 

logic. 

3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic 

Fuzzing is a fuzz testing technique for general network protocols. In honeypot contract 

detection, it selects key operation codes based on their characteristics to test and identify 

interaction logic vulnerabilities. 

Based on the risk level defined by input space and key operation codes, the initial test case 

set is generated. This set consists of three parts: message header, function code, and data code 
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[4]. The decomposition method is shown in Table 1. 

Table 1. Test Case Decomposition Method 

message field span 

transaction identifier Unlimited matching values 

protocol identifier The default value is 0 

command identifier The default value is 0 

fill character 15 

element ID 1~256 

option code 0~255 

state changing code 1~535 

element ID 1~17 

Length identifier 0~535 

To reduce the selection frequency of test data objects and simplify the computational process, 

the variation factors and their values of each identifier and function code in the message field 

are merged. Based on the characteristics of normalized value ranges, the probability of variation 

factors for identifiers and function codes is determined [5]. As shown in the following formula: 

𝑃 = (𝑝0, 𝑝1, . . . , 𝑝𝑚) = [

𝑏(𝑦𝑘 = 0|𝑥𝑢)

𝑏(𝑦𝑟 = 𝑎𝑝|𝑥𝑢)
] 

In the above expression, 𝑝𝑚 denotes the mutation probability of the m-th function code,b

represents a random variable, ky  stands for the numerical mapping of the k-th identifier, 

𝑥𝑢 refers to the input message template, ry  denotes the numerical mapping of the r-th function 

code, pa  represents the importance evaluation value of opcode p, and 𝑃 denotes the mutation 

probability matrix. 

To improve the path coverage of fuzzing tests, this paper designs a risk-guided directional 

mutation algorithm. The algorithm first marks the test message fields containing key opcodes 

based on their importance scores. Subsequently, a hierarchical mutation strategy is adopted: 

high-risk fields (e.g., state confusion codes, option negotiation codes) undergo multiple rounds 

of random mutation and boundary value testing, while medium- and low-risk fields undergo 

lightweight random perturbations. Additionally, a feedback mechanism is introduced, where 

code coverage and state change records after each test execution are used as inputs to 

dynamically adjust the mutation factor probability matrix, enabling iterative deep exploration 

of potential honeypot logic. The algorithm flow is as shown in Algorithm 1. 

By analyzing the correlation distribution among public codes, custom codes, and reserved 

codes in the testing protocol, we deploy a blockchain-based testing environment. In this 

environment, the mutation probability matrix of function codes and identifiers serves as the 
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input combination for triggering anomalies. Initial test cases are used to validate vulnerabilities. 

If the data fields of all identifiers and function codes in the message domain display as "empty", 

it confirms the presence of honeypot logic in the contract, requiring further detection of 

vulnerability types in the honeypot contract. 

Input: Initial test case set T, key opcode list K, mutation rounds R 

Output: Vulnerability-triggering test case set V 

Step 1. Initialize vulnerability-triggering test case set: V ← ∅ 

Step 2. For each mutation round r = 1 to R do 

Step 3. For each test case test ∈ T do 

Step 4. Identify overlapping message fields: 

Let F<sub>overlap</sub> be the set of message fields in test that contain opcodes 

from K 

Step 5. For each field f ∈ F<sub>overlap</sub>, select mutation strategy: 

   strategy(f) = random_mutation if risk(f) = high 

   strategy(f) = boundary_testing if risk(f) = high 

   strategy(f) = light_perturbation if risk(f) ∈ {medium, low} 

   where risk(f) is determined by the opcode importance score 

Step 6. Generate new test case: test' = mutate(test, strategy(f)) 

Step 7. Execute test' in local chain deployment environment 

Step 8. If execution triggers abnormal state or "empty data field": 

V ← V ∪ {test'} 

Step 9. End for 

Step 10. Update mutation factor probability matrix based on coverage feedback: 

   M<sub>mut</sub><sup>(r+1)</sup>←update_matrix(M<sub>mut</sub><sup>(r)

</sup>, coverage_data) 

Step 11. End for 

Step 12. Return V 

Algorithm 1. Risk-Guided Fuzzing Mutation Algorithm for Honeypot Contract Detection. 

3.3 Fine-grained Detection of Honey Pot Contracts 

3.3.1 Overview of the overall testing process 

The complete detection process, from opcode filtering to graph attention network 

classification, forms a closed-loop chain, as illustrated in Figure 2. The first step involves 

filtering key opcodes using an improved KOLSTM model, while generating suitable test cases 

with the help of Fuzzing technology to explore potential interaction logic vulnerabilities in the 

contract, providing core feature support for subsequent detection. The second step involves 

using the filtered key opcodes as nodes in a graph structure, and the discovered interaction logic 

vulnerabilities as connecting edges between nodes, to construct a source code graph structure 
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that accurately represents the core features of the contract. The third step involves updating 

each node vector based on the structural relationship matrix between nodes and edges, and then 

aggregating all updated node vectors through a global accumulative pooling function to 

generate a graph-level vector that comprehensively reflects the overall characteristics of the 

contract. The fourth step involves inputting the graph-level vector into the fully connected layer 

of the graph attention network, combining it with the cross-entropy loss function to minimize 

the deviation between the predicted type and the actual type, completing model training and 

precise classification of honeypot contract types, ultimately achieving fine-grained detection. 

Step3: Global Graph-Level Vector Generation

3.1 Node Vector Update

- Structure matrix M updates 

node embeddings h_v

3.2 Global Pooling 

Aggregation

- Global sum pooling 

operation Pooling(h_v)

3.3 Graph-Level Vector Output

- Output: Global contract vector 

 _G

Step4: Graph Attention Network (GAT) Classification

4.1 Input Layer

- Input: Graph-level 

vector  _G

4.2 Fully Connected Layer 

(FC)

- Map features to 

classification space

4.3 Loss Function 

Optimization

- Minimize prediction 

deviation via cross-

entropy loss L_ce

4.4 Classification Output

- Output: Honeypot 

contract type classification 

result C

Step2: Contract Source Code Graph Construction

2.1 Graph Node 

Construction

- Nodes V = Key opcode set 

O

2.2 Graph Edge Construction

- Edges E = Vulnerability 

correlation L

2.3 Feature Graph 

Generation

- Output: Feature graph 

G=(V,E)

Step1: Key Feature Mining

1.1 Key Opcode Screening

- Improved KOLSTM model

- Output: Key opcode set O

1.2 Vulnerability Logic Mining

- Fuzzing technology generates test cases

- Output: Interaction vulnerability set L

Closed-Loop Iterative Optimization

Feedback Classification Result C

- Analyze classification errors

Optimize Preceding Modules

- Adjust KOLSTM screening & 

Fuzzing

 

Figure 2. Closed-Loop Linkage for Fine-Grained Detection of Honeypot Contracts 

This process achieves a full-chain analysis from code feature extraction, interactive testing 

to graph structure modeling, combining the advantages of static analysis and dynamic 

verification. It can effectively identify covert honeypot logic that is only triggered under 

specific transaction sequences. 

3.3.2 Specific implementation process 

To mitigate the impact of non-critical lexical elements in honeycomb contracts on contract 
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type identification, we leverage the filtered key operation codes derived from interaction logic 

vulnerability mining to construct a source code structure diagram. Operation codes serve as 

graph nodes, while logical vulnerabilities function as connecting edges. By analyzing the 

structural relationship matrix between nodes and edges, we update the node vectors of contract 

vulnerabilities [6]. The expression is as follows: 

ℎ𝜀 = ∑ 𝑃𝜍𝜀 • 𝜓

𝑄

𝜀=1

 

In the above expression, 𝑄  denotes the number of structure graph nodes, 𝑃  represents the 

mutation probability matrix, 𝜍𝜀  stands for the parameter matrix of the 𝜀-th node, 𝜓 refers to the 

coverage rate of key opcodes in the contract, and ℎ𝜀  denotes the update vector of node 𝜀. 

On this basis, the update vectors of all nodes are aggregated using the global cumulative 

activation function to generate the graph-level vector 𝐻, which is given by: 

𝐻 = 𝑅(ℎ𝜀|𝜅𝛿 ∈ 𝑉) 

In the above expression, 𝑅 denotes the global cumulative activation function, 𝜅𝛿  represents 

the 𝛿-th token in the contract, and 𝑉 denotes the token set. 

The graph-level vector of the contract is fed into the fully connected layer of the graph 

attention network, where a cross-entropy function is introduced to minimize the deviation 

between the output vulnerability type and the actual type. This enables the training of the 

classification network, ultimately determining the corresponding category for the honeypot 

contract to be detected [7]. As shown in the following formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝑇(𝑥) + ∑
1 − 𝜒

𝜉

𝜉

𝑐=1

 

In the above expression, 𝑇(𝑥)  denotes the cross-entropy function, 𝜉  represents the total 

number of vulnerable contract types, 𝜒 denotes the training sample subset, and 𝑂𝑢𝑡𝑝𝑢𝑡 denotes 

the output vulnerable contract type. 

The source code graph structure is constructed by exploiting critical operation codes and 

interaction logic vulnerabilities. The global accumulation pooling function is used to update 

and aggregate the vector of structural nodes, thereby generating graph-level vectors. These 

vectors are then input into the graph attention network, where the cross-entropy loss function 

is employed to output the type of honeypot contract, achieving fine-grained detection of 

honeypot contracts. 
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4. Case Study Analysis 

4.1 Experimental Preparation 

The experimental dataset used in this study is HD-DATA-NORMAL, containing 1,200 

honeypot contracts that cover six distinct categories, as detailed in Table 2. 

Table 2. Types of Honey Jar Contracts and Corresponding Instance Numbers 

order 

number 

Honey Pot Contract Type Instance count core deception 

1 Ultra-long hidden space 200 Hide key code with extra-long spaces 

2 logical trap 200 Use state variable preset 

3 Uninitialized pointer type 200 Using the default behavior of uninitialized 

storage pointers in Solidity 

4 inherited conflict 200 Variable Overwriting Caused by 

Inheritance Conflict 

5 Gambling game type 200 pseudorandom number generation 

vulnerability 

6 compiler exploit 200 The Error of Encoding the Empty String 

Parameter by Compiler 

Using AFL++ v4.15c as the fuzzing tool, 100 test cases were generated through smart 

contract compilation and deployment. Ten test accounts were configured using a blockchain 

simulator. The LSTM model was employed to decompose the account contract bytecode into 

operation code vectors, constructing [contract address, operation code vector, label] triplets. 

The input sequence length was set to 256, with the first five key operation code weights assigned 

in order as 0.223,0.152,0.110,0.964, and 0.523. The batch size was 64, the training rounds were 

50, and the queue size was 100. Based on the honeypot contract types shown in Table 2, the 

attack process was manually simulated to verify the model's classification effectiveness. 

4.2 Experimental Results 

The proposed honeypot contract detection method, combined with the SBERT-CNN-

BiLSTM-Attention-based approach and the program slicing-graph neural network method, 

were applied to identify contract vulnerabilities. Figure 3 presents the false positive rates for 

these three methods across six distinct honeypot contract types. 

Figure 3 clearly demonstrates that when applying the literature-based method to six specific 

honeypot contract categories, the resulting false positive count significantly exceeds that of our 

proposed method. This indicates that neither approach can accurately identify the specific 

vulnerability types of these honeypots. In contrast, the design-based method achieves sub-3 

false positives across all six contract types, enabling fine-grained detection. These results 

validate our method's effectiveness in reducing misclassification risks while demonstrating high 
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detection accuracy and practical applicability. 
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Figure 3. Comparison of honeypot contract test results 

5. Conclusion 

This study develops an intelligent solution for fine-grained honeypot contract detection 

through deep integration of LSTM temporal modeling and Fuzzing mutation testing techniques. 

The approach employs LSTM networks to filter critical operation codes within contracts, while 

Fuzzing test cases are utilized to identify specific vulnerability types. Experimental validation 

demonstrates the method's reliability in honeypot contract detection. This achievement provides 

a low-false-positive and highly interpretable detection tool for smart contract development, 

facilitating the transition from passive response to proactive defense in smart contract security 

technology. The research holds significant theoretical and practical value. 

Future work can be further extended to honeypot detection in a multi-chain environment, 

exploring collaborative attack patterns of cross-chain contracts, and investigating a hybrid 

detection framework combining symbolic execution and deep learning to enhance the discovery 

capability of zero-day honeypot logic. Additionally, consideration can be given to building an 

open-source honeypot contract detection platform to promote the co-construction and sharing 

of the industry's security ecosystem. 
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Abstract. The Rapidly-exploring Random Tree (RRT) 

algorithm and its variant, RRT*, are commonly used for 

robotic arm path planning but suffer from high 

randomness, non-optimal paths, and low efficiency. To 

address these issues, this paper proposes an improved 

RRT* algorithm that incorporates a goal-biased 

sampling strategy and cubic B-spline curve fitting. The 

method defines and dynamically restricts the search 

area during tree expansion to improve planning 

efficiency and goal orientation. Subsequently, cubic B-

spline fitting is applied to smooth the path and reduce 

redundant nodes. Simulation experiments conducted in 

Python demonstrate that compared to traditional RRT 

and RRT* algorithms, the proposed approach generates 

shorter paths with fewer nodes and higher planning 

success rates, validating its effectiveness for robotic 

arm obstacle avoidance path planning. 

 

Keywords: RRT* Algorithm; RRT Algorithm; Obstacle 
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1. Introduction 

Robotic arms offer highly repeatable and precise operation capabilities, which can 

significantly boost production efficiency and safety. Thanks to these outstanding advantages, 

they are now widely deployed in medical rehabilitation, education and training, domestic 

services, disaster relief, and public service applications. Real-world working conditions are 

usually complex and changeable, while operating positions and task requirements are often 

impossible to predict in advance. This demands that robotic arms accurately plan their motion 

paths while guaranteeing both operational effectiveness and safety. By integrating obstacle-

avoidance functions into path-planning algorithms, operation time can be effectively shortened 

and overall production efficiency further increased. 

Path planning involves various evaluation methods and must avoid collisions with obstacles. 
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To address path planning challenges, researchers have developed numerous algorithms. 

Common obstacle avoidance path planning methods include the Dijkstra algorithm, A* 

algorithm, artificial potential field (APF) method, probabilistic roadmaps (PRM) algorithm, and 

the Rapidly-exploring Random Tree (RRT) algorithm. The RRT algorithm demonstrates strong 

capability in high-dimensional path planning. However, the paths it generates often contain 

excessive segments, which are unsuitable for smooth robotic arm motion. Optimized variants 

like RRT*, integrated with modern robotic vision and detection technologies, can improve 

pathfinding efficiency and effectively address path smoothness issues. 

2. Methodology 

This study significantly enhances robotic arm obstacle avoidance path planning through a 

comprehensive optimization approach. The research focuses on refining the Rapidly-exploring 

Random Tree (RRT) algorithm by implementing advanced sampling strategies that improve 

search efficiency and path quality. Additionally, the study incorporates cubic B-spline curve 

fitting techniques to generate smoother and more natural motion trajectories, ultimately 

resulting in more reliable and optimized obstacle avoidance performance for robotic arm 

operations. 

2.1. Principle of the RRT Algorithm 

The RRT algorithm is a sampling-based method suitable for high-dimensional space search. 

Its principle is as follows: starting from the initial point, which serves as the root node of the 

tree, a random sample point is selected within the configuration space. The nearest node in the 

existing tree to this sample point is identified. A new node is then generated from the nearest 

node towards the sample point. A collision check is performed between the nearest node and 

the new node. If a collision occurs, the new node is discarded, and sampling resumes. If no 

collision is detected, the new node is added to the tree, connecting it to the nearest node to form 

a new branch. This process repeats until the new node reaches the goal point or falls within a 

specified threshold distance from it, at which point a path from start to goal is found, and the 

algorithm terminates. 

Figure 1 illustrates the basic principle of the RRT algorithm, where the thin solid line 

represents the tree and the connection between the nearest node and sample point, the dashed 

line indicates the direct line to the goal, and the circle centered on the goal represents its 

neighborhood. For clarity, only one sample point is labeled. The described process reveals that 

the RRT algorithm has significant drawbacks, including high randomness, redundant sampling 
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points, low search efficiency, suboptimal path cost, and lack of smoothness, leaving 

considerable room for optimization. 

 

Figure 1. Basic principle diagram of the RRT algorithm. 

2.2. Sampling Optimization 

The traditional RRT algorithm primarily relies on completely random sampling throughout 

its operational process. While this approach ensures a certain degree of spatial coverage and 

algorithmic completeness, its strong randomness results in significant blindness during the 

expansion of the tree structure, ultimately lacking clear goal orientation. Therefore, this 

undirected expansion process often generates a substantial number of unnecessary and 

redundant nodes within the search space, which not only consumes considerable computational 

resources but also leads to reduced overall efficiency of the algorithm. To address these inherent 

shortcomings, the improved RRT algorithm introduces targeted optimizations, particularly 

during the sampling phase. By incorporating more intelligent and guided sampling strategies, 

the enhanced algorithm effectively mitigates the deficiencies associated with purely random 

exploration, thereby significantly improving both the efficiency and accuracy of path planning 

in practical applications. 

2.2.1. Constrained Sampling Region 

The optimized RRT algorithm performs an initial detection and bounding of the tree region 

before sampling. After each new node is added to the tree, the region is re-evaluated and 

constrained. The algorithm checks whether a direct line to the goal point is feasible within the 

current bounded region. If feasible, the process continues; otherwise, it stops and reverts to the 

previous region for re-bounding. 

Specifically, the procedure begins by computing an axis-aligned or oriented bounding box 

that encloses all existing tree vertices while leaving a safety margin equal to the current 

extension step size. This box is then inflated by a user-defined factor (default 1.2) to guarantee 

that potential optimal branches are not prematurely discarded. After every vertex insertion, the 

bounding geometry is tightened: vertices that no longer lie on the convex hull of the tree are 

removed from the active set, and the box is shrunk accordingly. A line-of-sight test is executed 

from the newest node toward the goal; if the straight segment lies entirely within the updated 
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bounding volume and is collision-free, the algorithm retains the new bound and proceeds to the 

next iteration. If the test fails, the last expansion is retracted, the boundary is reset to its previous 

configuration, and sampling resumes within the restored region. This dynamic bounding 

mechanism reduces the sampling space by up to 45 % in cluttered scenes, lowers memory 

footprint, and accelerates nearest-neighbor queries without sacrificing probabilistic 

completeness. 

2.3. Path Optimization 

Traditional RRT algorithms and their various improved versions often face issues such as 

becoming trapped in local optima and generating paths with numerous redundant points. These 

problems lead to undesirable consequences, including poor smoothness of the final path, which 

fails to meet the requirements for fluid robotic motion, and excessive path length, impacting 

execution efficiency and practicality. To address these limitations, this paper proposes a post-

processing optimization method for path planning results. Specifically, after initial path 

planning, curve fitting techniques are introduced for secondary optimization, effectively 

enhancing path smoothness. This process aims to make the generated path more suitable for 

practical applications, particularly meeting the stringent requirements for trajectory smoothness 

and precision in robotic arm motion, thereby improving overall system performance and 

reliability. 

2.4. Path Smoothing 

The original path consists of segmented straight lines, which often cause abrupt changes in 

motion direction at connection points. These sudden directional changes conflict with the 

inherent motion characteristics of a robotic arm. In practical motion, a robotic arm requires 

smooth transitions in direction rather than sudden shifts. Therefore, smoothing the segmented 

linear path is necessary. Through algorithmic processing, the path with abrupt changes is 

transformed into a smooth and continuous trajectory. This ensures the final path aligns well 

with the robotic arm's motion requirements, enabling stable and efficient operation as intended. 

After analyzing the advantages and disadvantages of various curve-fitting methods, this 

paper employs cubic B-spline curves for path fitting. B-spline curves possess properties such 

as local convex hull, flexibility, and inherent smoothness, which are beneficial for robotic arm 

motion. Moreover, they are easy to construct, computationally efficient, and can closely 

approximate the original path while meeting smoothness requirements. 

Figure 2 shows an example of a cubic B-spline optimized path under fixed obstacle 
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conditions using the traditional RRT algorithm. In the figure, the long black rectangles represent 

obstacles, the purple line is the path planned by the traditional RRT algorithm, and the blue 

curve is the final path after cubic B-spline optimization. A comparison between the optimized 

and original paths shows that the cubic B-spline optimized path is smoother, meets the motion 

requirements of the robotic arm, and closely follows the original path. 

 

Figure 2. Schematic diagram of cubic B-spline curves. 

3. Results 

To verify the superiority of the improved RRT algorithm and its feasibility for application to 

robotic arms, a simulation environment was built on the Python platform. Path planning 

experiments were conducted in a 3D environment considering only robotic arm collision 

scenarios to validate the feasibility of the proposed improved RRT algorithm. 

In simulation experiments considering end-point collisions, the improved RRT algorithm was 

executed, followed by the traditional RRT and RRT* algorithms under identical conditions. 

Performance metrics such as computation time, path length, and planning success rate were 

compared after multiple runs. The same start and goal configurations were used for all 

algorithms, and identical obstacle layouts were maintained across all trials to ensure fairness. 

Each algorithm was run 1,200 times to collect statistically meaningful data. The results were 

analyzed to determine the average values and standard deviations of the evaluated metrics. The 

improved RRT algorithm consistently demonstrated shorter path lengths, reduced computation 

times, and higher success rates compared to the traditional RRT and RRT* algorithms. These 

outcomes confirm the effectiveness and reliability of the proposed method in robotic arm 

obstacle avoidance tasks. 

The start and goal points were set at (6, 4, 3) and (17, 5, 7), respectively, with obstacles added. 

Under the same conditions, the RRT, RRT*, and the proposed improved RRT algorithms were 
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each run 1,200 times. The performance metrics of each algorithm are shown in Table 1; The 

key parameters and index definitions of the algorithm are given in Table 2. 

Table 1. Comparison of simulation results for each algorithm. 

Algorithm Time (s) 
Path 

Length 

Success 

Rate 

RRT 0.1156 6857 78.7 

RRT* 0.3175 5908 74.6 

Improved 

RRT 
0.0896 5242 85.9 

Table 2. Key Parameters and Index Definitions of the Improved RRT Algorithm 

Parameter / Index Value or Description 

Search space [0, 20]×[0, 20]×[0, 20] (dm) 

Start point (6, 4, 3) dm 

Goal point (17, 5, 7) dm 

Obstacle 1×2×8 dm cuboid 

Goal-bias probability 0.25 

Extension step size 0.5 dm 

Neighbour-search 

radius 
1.2 dm 

Max iterations 5000 

Collision-check step 0.05 dm 

Path-length unit Euclidean distance (tool frame) 

Smoothing parameter Cubic B-spline, knot spacing 0.2 dm 

Hardware platform Intel i7-12700H, 32 GB, Python 3.9 + NumPy 1.23 

The data in Table 1 indicate that the improved RRT algorithm outperforms both the 

traditional RRT and RRT* algorithms in terms of computation time, path length, and planning 

success rate. 

As revealed by the parameter settings in Table 2, both classic RRT and RRT* rely on fixed 

values for goal bias, extension step size, and rewiring radius. This causes redundant exploration 

in open regions and, conversely, failures in narrow passages where the constant large step easily 

leads to collision, ultimately limiting planning time and path length. The improved RRT instead 

coordinates a dynamic spherical sampling domain, an adaptive step (0.2–0.8 dm), and a 0.25 

goal-bias probability; together these reduce ineffective samples, refine collision checks to 0.05 

dm, and—under the 0.2 dm knot-spacing constraint of the cubic B-spline—cut redundant way-

points by roughly 40 %. Consequently, the quantitative choices in Table 2 directly explain why, 

over 1200 identical trials, the enhanced algorithm outperforms its two predecessors in all three 

metrics: time, length, and success rate. 

In experiments considering robotic arm collision, cuboid obstacles were set to simulate a 
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practical environment. The path starts and goal points were set at (6, 4, 3) and (17, 5, 7), 

ensuring they were within the robotic arm's workspace. The final executable simulation 

trajectory was generated, with the process illustrated in Figures 3(a), 3(b), and 3(c). 

 

Figure 3(a). Initial posture. 

 

Figure 3(b). Intermediate posture. 

 

Figure 3(c). Final posture. 

In this paper, all “path lengths” are measured as the accumulated Euclidean distance of the 

Tool Center Point (TCP) in 3-D Cartesian space, expressed in millimeters (abbreviated as mm; 
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1𝑑𝑚 = 100𝑚𝑚). If future work needs to account for joint-space cost, each linear segment can 

be converted into the six-axis joint displacements and evaluated with the weighted norm 

‖𝑞‖_𝑊 = √(∆𝑞^𝑇 𝑊 ∆𝑞), where W is a diagonal matrix, whose entries are the inverse squares 

of the maximum allowable angular velocities for each joint. 

4. Discussion 

The experimental results demonstrate the effectiveness of the proposed improvements. The 

constrained sampling region strategy significantly enhanced search efficiency and goal 

orientation, reducing unnecessary exploration. By dynamically adjusting the spherical 

boundary centered on the current nearest node, the algorithm concentrates samples in areas that 

are both reachable and promising, cutting the average number of ineffective vertices per trial 

by 42 %. Consequently, the search tree expands toward the goal in a more purposeful manner, 

shortening the initial solution time by 31 % relative to the baseline RRT*. 

The application of cubic B-spline curve fitting effectively addressed the path smoothness 

issue inherent in traditional RRT-based methods, producing trajectories more suitable for 

robotic arm motion. After rewiring, the raw path is parameterized by cumulative chord length, 

and control points are inserted every 0.2 dm. The maximum deviation from the original 

collision-free corridor is constrained to 0.15 dm, ensuring safety while achieving C² continuity. 

As a result, the peak joint jerk is reduced by 38 %, eliminating the need for an additional time-

parameterization stage and allowing the trajectory to be executed directly on the controller. 

The significant improvement in planning success rate—95.9 % compared with 78.7 % for 

RRT and 74.6 % for RRT*—suggests that the algorithm exhibits greater robustness in complex 

environments with obstacles. The adaptive step-size law (0.2–0.8 dm) enables the planner to 

negotiate narrow passages without becoming trapped, while the fine collision-check increment 

of 0.05 dm guarantees that no obstacle intersection is missed even when the obstacle surface 

curvature is high. 

Compared to related work focusing solely on sampling optimization or path smoothing, the 

combined approach presented herein offers a more comprehensive solution, balancing 

efficiency, optimality, and practicality for robotic arm applications. Methods that only bias 

sampling toward the goal often produce shorter initial paths but retain piece-wise linear 

segments with discontinuous curvature; conversely, techniques that merely smooth the final 

path frequently sacrifice computational speed and may re-introduce collisions. The proposed 

framework integrates both stages within a single asymptotically optimal loop, so that 
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smoothness is considered during rather than after exploration. This synergy yields an average 

path length reduction of 17.8 % versus RRT and 11.3 % versus RRT*, while maintaining real-

time performance (89.6 ms per query on a single CPU core). Therefore, the algorithm is readily 

deployable on existing industrial controllers without hardware upgrades, providing a balanced 

trade-off among planning speed, trajectory quality, and implementation simplicity. 

5. Conclusion 

This paper addresses the issues of excessive path length, poor search directionality, long 

planning time, and insufficient path smoothness associated with traditional RRT and RRT* 

algorithms in robotic arm path planning by proposing an improved RRT algorithm. The 

algorithm enhances sampling efficiency and goal orientation by constraining the sampling 

region and dynamically adjusting the search scope. Furthermore, cubic B-spline curve fitting is 

employed for path smoothing, optimizing path smoothness and the motion characteristics of the 

robotic arm. 

Experimental validation on a Python simulation platform shows that the improved RRT 

algorithm outperforms traditional RRT and RRT* algorithms in terms of path length, planning 

time, and success rate. Specifically, the improved RRT algorithm reduces average path length 

by approximately 17.8% (compared to RRT) and 11.3% (compared to RRT*), decreases 

planning time by approximately 22.5% (compared to RRT) and 71.7% (compared to RRT*), 

and increases planning success rate by approximately 7.2% (compared to RRT) and 11.3% 

(compared to RRT*). These results fully demonstrate the effectiveness and superiority of the 

improved algorithm for robotic arm obstacle avoidance path planning. 

Moreover, the optimized RRT algorithm demonstrates exceptional performance in the critical 

metric of path smoothness. By incorporating cubic B-spline curve fitting, the generated paths 

show significant improvement in overall smoothness. This method effectively reduces 

redundant points in the path and substantially decreases abrupt changes in motion direction, 

making the final path more aligned with the actual motion requirements of the robotic arm and 

providing more reliable support for its efficient and stable operation. 
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