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Abstract. In the context of intelligent livestock 

farming, precise individual animal identification has 

become a critical requirement. To address the 

challenges posed by high facial similarity among 

black goats and the need for model retraining in 

incremental learning scenarios, this paper introduces 

GoatFaceNet, a lightweight goat face recognition 

model based on MobileFaceNet. GoatFaceNet 

incorporates MixConv to enhance its feature 

extraction capability. Furthermore, the CurricularFace 

loss function is employed to improve inter-class 

separability and intra-class compactness, thereby 

increasing the model's robustness in open-set 

recognition tasks. A comprehensive goat face dataset 

was constructed to support the evaluation. 

Experimental results show that GoatFaceNet 

achieves an accuracy of 94.2% on the test set. 

Additional evaluations involving 3,200 goat face 

pairs confirm the model's superior open-set 

discrimination performance, validating its practical 

applicability and deployment potential in real-world 

farming environments. 

 

Keywords: Black Goat, Lightweight Model, High 

Similarity Recognition; 

1. Introduction 

Goat farming needs reliable individual identification for health monitoring, end-to-end 

traceability, and daily herd management. Manual checks, branding, and RFID ear tags are 

common and quick to apply. Ear tags may cause ear infections and can fall off or break in 

practice [1]. Iris scan is expensive and difficult to deploy at scale. Goat face recognition is non-

contact and low-cost. It is attracting growing interest for contact-free identification on farms. 

Early face recognition used geometric features. It needed manual feature engineering and did 



Open-set Goat Face Recognition with MobileFaceNet Adaptation for Livestock Farming 

34 

not generalize well. Corkery et al. [2] studied sheep face recognition with independent 

component analysis on whole-face images, then evaluated a pre-trained classifier. Deep 

learning changed the field. Convolutional neural networks became standard for hierarchical 

feature extraction in human face recognition. DeepFace [3] reported high accuracy on the LFW 

dataset. Practical systems need fast inference and low compute. This pushed research toward 

lightweight models such as MobileNet [4,5] and ShuffleNet [6,7]. Face-oriented variants 

include MobileFaceNet [8] and ShuffleFaceNet [9]. Margin losses such as ArcFace [10] enlarge 

inter-class separation. These designs run on embedded and edge devices, supporting transfer 

learning for animal identification. 

In animal face recognition, Zhang et al. [11] integrated an ECCSA spatial-attention module 

into MobileFaceNet for sheep-face recognition, achieving 96.73% accuracy. Xu et al. [12] 

proposed a two-stage lightweight cattle-face recognition framework, using ArcFace loss for 

robust feature extraction. In closed-set scenarios, ArcFace improved classification accuracy by 

11% compared to Softmax. Billah et al. [13] developed an automated recognition framework 

for dairy goats and attained 93% accuracy under closed-set conditions without extensive data 

preprocessing. Zhang et al. [14,15] explored sheep face recognition from multiple perspectives, 

proposing a multi-view fusion method to enhance robustness to pose variation and a Siamese-

based approach to improve generalization under limited training samples. Li et al. [16] proposed 

an optimized lightweight network structure that balances recognition accuracy and model 

complexity, making it suitable for deployment in resource-constrained farm environments. 

Porting human face recognition models to animal face recognition often yields strong 

performance on closed-set training. In real farm scenarios, however, short breeding cycles 

together with selling cause herd fluctuations; when the population changes incrementally, the 

classifier requires retraining; misclassification risk also rises under atypical husbandry 

conditions. Hence, open-set recognition becomes necessary. Sheep face recognition further 

suffers from class imbalance, limited data acquisition, and small dataset size. This study focuses 

on black goats with uniformly dark coats, weakly distinctive facial cues, and high inter-

individual similarity; existing models struggle to learn discriminative features effectively [17], 

posing a challenge to overall accuracy. 

In summary, aiming to improve goat-face recognition accuracy in open-set scenarios, this 

paper enhances the MobileFaceNet architecture to achieve higher precision without 

significantly increasing parameter count. A specialized loss function is employed to enlarge the 

decision boundaries between classes. The main contributions of this research are as follows: 



Chenlin Li, Zhibo Liu 

35 

1. Two datasets were constructed to evaluate the performance of facial recognition methods 

on Black Goats under both closed-set and open-set conditions; 

2. Design a new Mix block to strengthen feature representation capabilities, thus reducing 

misclassification rates in open-set scenarios; 

3. Introduce a practical two-stage goat-face recognition method, enabling the recognition of 

new individuals immediately after their registration, without necessitating retraining of the 

entire model. 

2. Dataset 

The goat face data were collected on a farm in Liuyang, Hunan Province. To ensure diversity, 

126 Black Goats were randomly selected for video recording under various weather conditions. 

During recording, a handheld camera tracked each goat’s frontal face while operators varied 

angles using a mobile device; camera resolution was 1920×1080 pixels, yielding 126 video 

sequences. Because consecutive frames are highly redundant, directly using them may cause 

overfitting. Each video stream was first processed with OpenCV to extract one frame every 15 

frames. Extracted frames were filtered using SSIM; blurred or otherwise invalid images were 

manually removed, resulting in 3,167 raw images. These images are divided into training and 

testing sets in a ratio of 8:2. 

 

Figure 1. (a) Detection results. (b) Data augmentation examples. 

Both data collection and application were single-target scenes. Goat face detection was 

performed using YOLOv8s; some detection results are shown in Figure 1(a). The detected goat 

face images were cropped and resized to 112×112 pixels. A random data augmentation strategy 

is adopted, including random horizontal flipping, rotation, changing brightness and contrast, 

adding salt and pepper noise, and Gaussian noise, as shown in Figure 1(b). Each goat’s image 

count was augmented to 50 to ensure balanced distribution. In total, 6,300 goat‐face images 

 riginal  otation      otation      right    

 right     ontrast      ontrast     Gaussian  oise
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were obtained, forming the GF train set. The number of goats and images included in the dataset 

are shown in Table 1. 

Additionally, we collected facial images from 84 black goats, obtaining 537 samples in total. 

We created 1,600 positive pairs and 1,600 negative pairs, forming 3,200 pairs with a balanced 

ratio of positive and negative samples. This paired dataset, named GF-open, was used 

specifically to evaluate the generalization capability of the model under open-set recognition 

conditions. 

Table 1. Summary of the datasets used in this study. 

Dataset Goats Images 

GF train set 126 6300 

GF test set 126 633 

GF-open set 84 537 

3. Method 

3.1. GoatFaceNet 

 

Figure 2. Architecture of GoatFaceNet. 

This study is based on MobileFaceNet, a lightweight face‐recognition method that uses the 

bottleneck block from MobileNetV2 to enhance nonlinear expressivity. To improve robustness 

and generalization for goat face recognition, we designed GoatFaceNet, which retains the 

inverted residual structure of MobileNetV2. The overall architecture is shown in Figure 2. 

Initially, GoatFaceNet extracts edge features from input images. Subsequently, depthwise 

separable convolutions are applied to reduce computational complexity while preserving 

crucial feature information. The subsequent three stages each consist of multiple Mix blocks, 

designed for hierarchical feature extraction and refinement. When the dimensions of inputs and 

outputs match, R-Mix blocks with residual connections are utilized to mitigate gradient 

vanishing issues. Following feature extraction, a linear global depthwise convolution 

(LinearGDConv) replaces global average pooling to generate feature representations. Finally, 

a linear 1×1 convolution compresses the resulting high-dimensional features into a compact 
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128-dimensional embedding vector, representing each goat face. 

3.2. Mix Block 

Depthwise convolution is widely used in lightweight network architectures to significantly 

reduce computational complexity by independently performing convolutions on each channel. 

However, employing kernels of a single size limits the ability of the model to capture both fine 

local details and broader global structures. To enhance multi-scale spatial representation, we 

introduce the MixConv [18], inspired by multi-scale convolutions in the Inception [19] 

architecture, as illustrated in Figure 3. To minimize computational redundancy, MixConv 

avoids using multiple parallel branches. Instead, it combines kernels of different sizes (e.g., 3×3, 

5×5, and 7×7) within a single depthwise convolution operation. Specifically, feature maps with 

c  channels are divided evenly into g  groups, each containing c/g  channels. Each group is 

convolved separately using a kernel of a designated size, with weights denoted as 𝑤(𝑡), where 

t ∈ [1, g] indexes the group number. The outputs from all groups are then concatenated along 

the channel dimension to form a unified feature map y ∈ 𝑅ℎ×w×c. This approach enables multi-

scale feature extraction with reduced computational cost, thereby improving recognition 

performance in black goat face feature extraction tasks. 

 

Figure 3. (a) Vanilla Conv; (b) Mix Conv. 

Previous recognition tasks [20,21] have demonstrated that MixConv can improve model 

performance. Based on these findings, we design a novel Mix block module (see Figure 4) to 

exploit multi-scale receptive fields further. Input channels are evenly divided into groups, each 

group undergoes depthwise separable convolutions with kernel sizes of 3×3, 5×5, 7×7, as well 

as a parallel 1×1 convolution. Outputs from these convolutions are concatenated along the 

channel dimension, effectively balancing multi-scale receptive fields without substantially 

increasing parameter count. To maintain consistent spatial dimensions after downsampling, 

appropriate padding is applied for each kernel branch. The Swish activation function is used for 

richer feature representation, and an SE module is embedded to adaptively recalibrate channel 

3×3 Conv

5×5 Conv

k×k Conv
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responses [22,23]. Finally, a channel shuffle operation is included to disrupt fixed group 

boundaries, promoting better interaction and representation among feature channels. 

 

Figure 4. Mix block 

3.3. R-Mix Block 

When the input and output channel dimensions are equal, we add a residual connection to 

create the R-Mix Block, as shown in Figure 5. This residual connection involves element-wise 

addition between the input feature and the output of the multi-scale convolutions, thereby 

preventing information loss during feature transformation. This mechanism mitigates gradient 

vanishing and network degradation in deeper layers. Consistent with the inverted residual 

structure, nonlinear activations are applied only in intermediate layers, preserving a linear 

mapping between input and output. This strategy effectively balances representational power 

and training stability without significantly increasing structural complexity. 

 

Figure 5. R-Mix block with residual connection. 

3.4. Loss Function 

In goat face recognition, the ideal case is that the embedding features learned by the model 

exhibit good separability in the vector space. Although the Softmax loss function is commonly 

used for classification tasks, it has inherent limitations in minimizing intra-class distances and 

expanding inter-class margins. To address these limitations and enhance the discriminability of 
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embedding features, researchers have developed various angular-margin–based loss functions, 

which can generally be described under a unified Softmax loss framework: 

 
𝐿 = − G(p(𝑥𝑖))log

𝑒𝑠(𝑐𝑜𝑠𝜃𝑦𝑖
)

𝑒𝑠(𝑐𝑜𝑠𝜃𝑦𝑖
) + ∑ 𝑒𝑠(𝑐𝑜𝑠𝜃𝑗)𝑛

𝑗=1,𝑗≠𝑦𝑖

 
(1) 

where 𝑥𝑖 denotes the embedding feature of the i-th sample, 𝑦𝑖 is its corresponding class label, 

and p(𝑥𝑖) refers to the predicted probability of assigning 𝑥𝑖 to class 𝑦𝑖. 𝐺(⋅)  is an indicator 

function that equals 1 in the case of ArcFace. The weight vector W𝑗 ∈ R𝑑  denotes the j-th 

column of the weight matrix W ∈ R𝑑 . b𝑗 ∈ R represents the bias term. The total number of 

classes is denoted as 𝑛. 

Within this unified framework, margin-based loss functions differ primarily in how they 

adjust cosine similarities for positive and negative classes. ArcFace introduces a margin directly 

into the positive-class adjustment function, defined as 𝑇(𝑐𝑜𝑠𝜃𝑦𝑖
) = cos (𝜃𝑦𝑖

+ 𝑚), bringing 

same-class embeddings closer together. However, ArcFace treats all samples equally and does 

not consider variations in sample difficulty. During training, some negative-class samples 

exhibit very high cosine similarity. These hard samples are easy to misclassify. MV-Arc-

Softmax [24] addresses this issue by introducing a fixed coefficient t to amplify the negative-

class cosine similarities of these hard samples, thereby increasing their loss weights. However, 

due to the fixed value of t, this method struggles to converge effectively early in training and 

cannot dynamically shift its focus to new hard samples later in training. 

This study adopts the CurricularFace [25] loss function, which dynamically adjusts the 

parameter t throughout training, allowing the model to progressively shift focus from easy to 

more difficult samples. Initially, the training emphasizes easy samples with smaller values of 

𝑡𝑘. As training progresses, 𝑡𝑘 gradually increases, shifting the model’s focus to harder samples, 

thus enhancing feature discrimination. While the positive-class adjustment remains consistent 

with ArcFace, the negative-class adjustment function is defined as follows: 

 𝑁(𝑡, 𝑐𝑜𝑠𝜃𝑗) = {
𝑐𝑜𝑠𝜃𝑗 ,                       𝑇(𝑐𝑜𝑠𝜃𝑦𝑖

) − 𝑐𝑜𝑠𝜃𝑗 ≥ 0

𝑐𝑜𝑠𝜃𝑗(𝑡 + 𝑐𝑜𝑠𝜃𝑗), 𝑇(𝑐𝑜𝑠𝜃𝑦𝑖
) − 𝑐𝑜𝑠𝜃𝑗 < 0

 
(2) 

where 𝑡𝑘  is the curriculum parameter at iteration 𝑘 . In the early stages of training, 𝑡𝑘  is 

relatively small and approaches 0, resulting in 𝑡𝑘 + 𝑐𝑜𝑠𝜃𝑗 < 1. This suppresses the weight of 

hard samples and emphasizes easy ones. As training progresses, 𝑡𝑘 gradually increases, making 

𝑡𝑘 + 𝑐𝑜𝑠𝜃𝑗 > 1 , which shifts the model’s focus toward hard samples and enhances 
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discriminative ability. An exponential moving average (EMA) is used to estimate 𝑡𝑘 where 𝑟𝑘 

denotes the mean cosine similarity of positive samples in iteration  𝑘, and α is the smoothing 

factor (default set to 0.99): 

 𝑡𝑘 =  α𝑟𝑘 + (1 − α)𝑡𝑘−1 (3) 

the complete loss function of CurricularFace is defined as follows: 

 𝐿 = −log 
𝑒

𝑠(𝑐𝑜𝑠𝜃𝑦𝑖
+𝑚)

𝑒
𝑠(𝑐𝑜𝑠𝜃𝑦𝑖

+𝑚)
+∑ 𝑒

𝑠𝑁(𝑡𝑘,𝑐𝑜𝑠𝜃𝑗)
𝑛

𝑗=1,𝑗≠𝑦𝑖

 
(4) 

This method compresses the intra-class variations that introduce noisy features while 

enlarging inter-class distances, thereby improving the discriminative capacity of the embedding 

features. It enables the model to maintain a low false acceptance rate (FAR) even when 

encountering unregistered identities. 

4. Experiments and Analysis 

4.1. Experimental Settings and Evaluation Metrics 

The experiments in this study were conducted using a Windows 10 operating system, 

NVIDIA GeForce RTX 4060 GPU, and 32 GB of memory. PyTorch 2.3.1 was used as the deep 

learning framework, running under Python 3.8. The stochastic gradient descent (SGD) 

optimizer was employed with an initial learning rate of 0.01, momentum of 0.9, and weight 

decay set at 0.0001. The model was trained for 50 epochs, and the learning rate was adjusted 

using a cosine annealing schedule. 

Evaluation metrics for the goat face recognition model included accuracy, precision, recall, 

F1-score, and model parameters. Accuracy refers to the proportion of correctly classified 

samples relative to all samples. Precision measures the proportion of true positives among all 

samples predicted as positive, while recall measures the proportion of actual positive samples 

correctly identified by the model. The F1-score, calculated as the harmonic mean of precision 

and recall, provides a balanced evaluation of model performance. The number of parameters 

indicates the model’s complexity, with fewer parameters generally indicating better suitability 

for resource-constrained deployments. The following formulas depend on the values of true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). 

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(5) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(6) 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(7) 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(8) 

4.2. Two-stage recognition method 

To achieve accurate automatic recognition of individual goats, we propose a two-stage 

recognition method. Firstly, goat face regions are annotated using LabelImg, and a YOLOv8s 

model is trained to detect and crop goat faces. This YOLOv8s detector is later employed in the 

final application. In the training stage, the known categories from the GF train set are used. 

Subsequently, inference is performed on images in the GF test set to evaluate closed-set 

recognition performance. Additionally, the GF-open dataset simulates an open-set recognition 

scenario to test the model’s generalization capability. The entire workflow is illustrated in 

Figure 6. By minimizing computational load during recognition, this method ensures suitability 

for deployment on edge devices with limited resources. 

 

Figure 6. Two-stage recognition method. 
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4.3. Comparison with Baseline Models 

Based on transfer learning principles, the officially released pre-trained weights were used 

for model initialization during training. Trends of training accuracy and loss are displayed in 

Figure 7. To evaluate the effectiveness of our proposed GoatFaceNet architecture, comparisons 

were made with mainstream lightweight models, including MobileFaceNet, ShuffleNetV2, 

MobileNetV2, and VarGFaceNet [26]. All models were trained using the CurricularFace loss 

function with hyperparameters s=64.0, m=0.5, smoothing factor  α = 0.99 , and an initial 

curriculum parameter 𝑡0=0. Predictions were made by selecting the class with the highest 

predicted probability.  

 

Figure 7. Training accuracy curves and loss curves. 

The final metrics for each model on the test set, shown in Table 2, quantify their classification 

performance. The MobileViT-S [27] model performed poorly in the test, with an accuracy rate 

of 89.7%. Compared with MobileFaceNet, the proposed GoatFaceNet achieved a 1.9% 

improvement in accuracy without a significant increase in the number of model parameters. 

When compared to classical lightweight models such as MobileNetV2 and ShuffleNetV2, 

GoatFaceNet showed more than a 5% increase in accuracy while maintaining a similar 

parameter count. Additionally, GoatFaceNet achieved the highest F1-score, further confirming 

its superior discriminative ability and efficiency. By explicitly handling difficult samples 

through the CurricularFace loss function, the model optimizes boundary samples more 

effectively during training, thus achieving improved accuracy during testing. 

Table 2. Comparison of results between GoatFaceNet and other models. 

Model Accuracy Precision Recall F1-score Parameters/M 

MobileNetV2 89.1 90.9 89.9 90.40 3.5 

ShuffleNetV2 88.7 90.7 89.5 90.10 2.4 

MobileFaceNet 92.3 94.0 93.7 93.85 1.0 

VarGFaceNet 93.9 94.6 93.4 94.00 5.0 

MobileViT-S 89.7 91.5 89.3 90.39 5.6 

ResNet-50 88.9 90.4 89.6 89.95 25.6 

GoatFaceNet 94.2 94.8 93.6 94.20 1.1 
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4.4. Effect of Different Loss Functions 

This section also compares the performance of different loss functions in the goat face 

recognition task, specifically ArcFace, MV-Arc-Softmax, and CurricularFace. Furthermore, the 

generalization capability of the proposed method was evaluated using a public dataset [13], 

which contains facial images of 10 dairy goats. The original method proposed by the dataset 

authors achieved an accuracy of 93% without additional preprocessing. 

On the GF test set, MobileFaceNet achieved an accuracy of 90.3% with ArcFace, which 

increased to 92.0% with MV-Arc-Softmax, and further improved to 92.3% when using 

CurricularFace. These results suggest that applying stronger margin constraints can 

significantly enhance the discriminative capacity of learned features by placing greater 

emphasis on correctly classifying hard samples. 

Using ArcFace, GoatFaceNet outperformed baseline by 3.2% on the GF test set and by 3.4% 

on the public dataset. When combining GoatFaceNet with CurricularFace, accuracy reached 

94.2% on the test set, achieving the highest accuracy among all evaluated combinations. On the 

public dataset, accuracy improved to 93.3%. Although this represents only a modest 0.3% gain 

over the original method proposed by the dataset authors, it remains meaningful given the 

limited number of goats included. 

These outcomes demonstrate that the enhanced multi-scale structure and optimized feature 

extraction method synergistically reinforce the benefits of CurricularFace, thus significantly 

improving the model’s generalization and accuracy. 

Table 3. Accuracy (%) of different loss functions on different datasets. 

Method GF test set Dataset [13] 

MobileFaceNet+ArcFace 90.3 86.6 

MobileFaceNet+MV-Arc-Softmax 92.0 89.7 

MobileFaceNet+ CurricularFace 92.3 91.3 

GoatFaceNet +ArcFace 93.5 90.0 

GoatFaceNet + MV-Arc-Softmax 93.7 91.2 

GoatFaceNet+ CurricularFace(ours) 94.2 93.3 

4.5. Performance under Simulated Open-set Scenarios 

To evaluate the model’s generalization capabilities in incremental open-set recognition 

scenarios, additional experiments were conducted on the GF-open dataset, which includes 84 

goats and comprises 3,200 image pairs for verification. Among these pairs, half (1,600) were 

positive pairs (images of the same goat labeled as 1), and half (1,600) were negative pairs 

(images of different goats labeled as 0). 
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In this experiment, normalized feature vectors were extracted from each image pair, and 

cosine similarity was computed between the vectors. A classification threshold, determined 

through grid search on the test set, was then applied to distinguish whether the two images 

represented the same goat or different individuals. 

Results presented in Table 4 clearly illustrate that CurricularFace offers greater 

generalization capability compared to ArcFace. Specifically, adding CurricularFace increased 

the accuracy of MobileFaceNet from 73.3% to 79.4%, an improvement of 6.1%. GoatFaceNet 

with ArcFace achieved an accuracy of 78.9%, while combining GoatFaceNet with 

CurricularFace achieved the best performance at 84.5%. Overall, the structural improvements 

and adoption of CurricularFace effectively enhance the model's open-set recognition 

performance. 

Table 4. Accuracy (%) of GF-open set. 

Method Accuracy 

MobileFaceNet+ArcFace 73.3 

MobileFaceNet+ CurricularFace 79.4 

GoatFaceNet +ArcFace 78.9 

GoatFaceNet+ CurricularFace 84.5 

4.6. Attention Visualization 

 

Figure 8. Heat maps of some goat faces. 

While closed-set recognition can be framed as a classification task, open-set recognition 

fundamentally constitutes a metric learning challenge, as the model must robustly handle 

incremental unknown-class samples. This challenge is further intensified by the high similarity 

among black goat facial appearances, which increases the difficulty of accurate identification. 

This study employed Grad-CAM to illustrate the attention distributions of MobileFaceNet and 

GoatFaceNet during recognition tasks. Figure 8 shows the visualization results, where red 
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indicates higher activation and blue indicates lower activation for the predicted class. 

MobileFaceNet’s attention is scattered across the image, whereas GoatFaceNet demonstrates a 

more focused activation pattern, indicating stronger feature-selection capabilities. 

5. Conclusion 

This study employs YOLOv8s for goat face detection and cropping before the recognition 

stage, significantly reducing computational requirements and making the entire recognition 

process suitable for resource-constrained edge devices. To address challenges associated with 

open-set recognition and the dynamic number of black goats, we improved MobileFaceNet by 

introducing mixed depthwise convolution and developing a novel Mix block. This new block 

achieves enhanced multi-scale feature extraction without significantly increasing model 

complexity. Additionally, adopting the CurricularFace loss function notably improves the 

model’s capability to discriminate hard samples in open-set scenarios. The effectiveness of 

these improvements has been validated through additional open-set simulation experiments, 

and their applicability in non-contact identification in real-world farm settings has been 

confirmed.  

The GF train set used in this study is relatively small. To enhance data diversity, we applied 

data augmentation techniques; however, these methods may introduce risks of overfitting and 

constrain the model's generalization capability. Despite this limitation, our experimental results 

demonstrate the effectiveness of the proposed approach. Nevertheless, we fully recognize that 

performance is inherently constrained by the scale and diversity of the training data. Zhang et 

al. [15] introduced a twin network-based recognition method that effectively improves model 

performance under low-data regimes by learning pairwise sample similarities. Motivated by 

this, we plan to collect larger-scale, high-quality datasets with natural distribution 

characteristics in future work and further investigate advanced strategies, such as few-shot 

learning, to mitigate data scarcity and strengthen model generalization. 
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