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Abstract. The global aviation logistics sector, a critical 

enabler of international trade and just-in-time supply 

chains, is acutely vulnerable to geopolitical and 

economic disruptions. This study investigates the 

multifaceted impact of Sino-American trade tensions 

and reciprocal tariff impositions on the resilience and 

operational efficiency of aviation logistics networks. 

We develop a comprehensive Bayesian Network (BN) 

model to quantify the complex, probabilistic 

interdependencies among key risk variables, including 

tariff levels, trade policy uncertainty, fuel price 

volatility, cargo demand fluctuations, and regulatory 

constraints. The model is parameterized using a 

combination of empirical trade data, industry reports, 

and expert elicitation. A focused case study on the US-

China trade war (2018-2020) validates the model's 

utility, demonstrating significant cascading effects on 

transpacific air cargo routes. Our analysis reveals that 

high tariff scenarios increase the probability of severe 

logistics disruptions by over 65%. The results provide 

critical, actionable insights for stakeholders, 

highlighting the necessity of strategic diversification, 

dynamic pricing models, and policy engagement. This 

research contributes a novel, adaptable analytical 

framework for enhancing the resilience of aviation-

dependent supply chains in an era of escalating 

protectionism and economic uncertainty. 
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1 Introduction 

Global aviation logistics networks form the backbone of modern commerce, facilitating the 

rapid, reliable movement of high-value, time-sensitive goods across continents. These networks 
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are integral to sectors such as electronics, pharmaceuticals, and perishables, where speed and 

reliability are paramount. However, this critical infrastructure is increasingly operating in a 

volatile geopolitical landscape characterized by rising protectionism, trade disputes, and 

economic nationalism. The complex, interdependent nature of global supply chains means that 

policy shocks in one economic corridor can trigger cascading disruptions worldwide, 

challenging the very foundations of globalized production and distribution systems. 

The trade relationship between the United States and China, the world's two largest 

economies, is particularly consequential. According to data from the International Air Transport 

Association (IATA), the transpacific air cargo corridor is among the busiest globally, handling 

over 1.5 million metric tonnes of freight annually pre-2018. The onset of the Sino-American 

trade war in 2018, marked by the reciprocal imposition of tariffs on hundreds of billions of 

dollars’ worth of goods, represented a profound exogenous shock to this system. Tariffs directly 

alter the cost structures of traded goods, leading to demand suppression, supply chain 

reconfiguration, and increased operational uncertainty. For aviation logistics providers, this 

manifests as volatile cargo volumes, erratic yield management, underutilized fleet capacity on 

previously lucrative routes, and heightened exposure to fuel and currency market fluctuations. 

The resulting uncertainty creates a 'planning paralysis' where long-term investments in fleet 

expansion and route development are deferred, ultimately stifling innovation and capacity 

growth in the sector. 

Organizations within the aviation logistics ecosystem, including integrated carriers (e.g., 

FedEx, UPS), combination airlines, and freight forwarders, found themselves at the nexus of 

this dispute. Their operational planning, traditionally based on stable trade patterns, was 

severely challenged. For instance, the initial tariffs on Chinese electronics components forced 

manufacturers to slow production, immediately reducing demand for eastbound air cargo 

capacity. Conversely, tariffs on U.S. agricultural products diminished westbound volumes, 

creating a significant imbalance that eroded profitability for carriers. The International Civil 

Aviation Organization (ICAO) noted that such trade tensions introduce "significant friction" 

into the global air transport system, reducing its efficiency and economic contribution. This 

friction is not merely economic; it extends to regulatory complexity, as operators must navigate 

an evolving landscape of export controls, customs regulations, and security protocols that can 

change with little warning, further increasing compliance costs and transit times. 

Despite the evident operational and economic impacts, a significant gap exists in the literature 

regarding a holistic, probabilistic assessment of these risks. Traditional economic models focus 
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on macro-level trade flows and welfare effects, while supply chain management studies often 

lack the operational specificity of aviation logistics. There is a pressing need for an integrated 

analytical framework that can capture the non-linear interactions between policy, economic, 

and operational variables and quantify their collective impact on logistics performance. This 

study addresses this gap by developing a structured, evidence-based risk assessment model 

using Bayesian networks. BNs are uniquely suited for this domain due to their ability to 

synthesize quantitative data with qualitative expert knowledge, model complex conditional 

dependencies, and perform both predictive (what-if) and diagnostic (root-cause) inference 

under deep uncertainty. This approach allows for the formal integration of disparate data 

sources—from historical trade figures and fuel price indices to qualitative expert assessments 

of political risk—into a unified, quantifiable model of systemic vulnerability. 

The scientific contribution of this work is threefold: Firstly, it operationalizes a complex 

socio-economic phenomenon within a precise aviation logistics context, moving beyond 

theoretical discussion to empirical, quantifiable risk assessment. Secondly, it demonstrates the 

efficacy of probabilistic graphical models for strategic decision-support in high-stakes, dynamic 

environments, providing a template for risk analysis in other geopolitically-sensitive sectors. 

Finally, it provides a validated framework that can be adapted to assess the impact of other 

geopolitical disruptions, such as sanctions or regional conflicts, on global logistics networks, 

thereby contributing to the broader field of supply chain resilience engineering. 

The remainder of this paper is structured as follows. Section 2 provides a comprehensive 

review of the relevant literature, synthesizing research from trade economics, supply chain 

resilience, and computational risk modeling. Section 3 details the methodology, including the 

identification of key risk factors, the structure of the Bayesian Network, and the 

parameterization process, with an integrated case study on the 2018-2020 US-China trade war. 

Section 4 presents the results of the quantitative analysis, discussing the identified critical 

vulnerabilities and their implications, and deriving evidence-based strategic suggestions for 

industry stakeholders. Finally, Section 5 concludes the study by summarizing the findings, 

acknowledging limitations, and outlining promising directions for future research. 

2 Literature Review 

Research intersecting trade policy, logistics, and risk modeling has expanded significantly in 

response to recent geopolitical upheavals. This review synthesizes contemporary literature from 

three key domains: the economic and sectoral impact of tariffs, supply chain resilience 

strategies, and advanced computational models in logistics risk assessment. 



The Impact of Tariffs and Trade Tensions on Global Aviation Logistics: A Bayesian Network 

Risk Analysis 

14 

2.1 Economic and Sectoral Impact of Trade Tensions 

A substantial body of post-2020 research has detailed the macroeconomic and 

microeconomic consequences of recent trade disputes. Bown [2] provided a comprehensive 

empirical analysis of the US-China trade war, concluding that the tariffs were almost entirely 

passed through to US importers and consumers, increasing costs and disrupting supply chains. 

These finding challenges earlier notions that exporting nations would absorb the cost, 

highlighting the inflationary pressure of such policies. Amiti et al. [1] further quantified these 

effects, noting that the uncertainty alone contributed to a significant decline in business 

investment, as firms postponed capital expenditures amidst unclear future trade rules. The 

aviation sector-specific impacts have been similarly documented. IATA [7] reported that trade 

tensions were a primary contributor to a 5.6% year-on-year decline in global air cargo demand 

in 2019, even before the COVID-19 pandemic. This decline was not uniform; it hit specific 

high-value commodity segments hardest, creating a ripple effect through logistics networks. Lei 

and Ozanian [9] analyzed airline financial data, finding that carriers with significant exposure 

to transpacific routes experienced notable declines in cargo revenue and profit margins during 

the height of the tensions, forcing a strategic re-evaluation of network planning. Zhang and 

Zhang [13] focused on the reshuffling of global value chains, observing that while some 

manufacturing shifted to Southeast Asia ("China+1" strategy), the immediate effect was a 

period of pronounced volatility and increased logistics costs for rerouted goods, as the new 

routes lacked the maturity and scale efficiency of established transpacific corridors. 

2.2 Supply Chain Resilience and Adaptation Strategies 

The literature on supply chain resilience has evolved to address trade-induced disruptions, 

moving from reactive to proactive and adaptive strategies. Ivanov [8] introduced the concept of 

"viability" in supply chains, emphasizing adaptive capabilities for navigating long-term 

geopolitical shocks. This framework posits that a viable system can not only withstand 

disruptions but also adapt its structure and function to thrive in a new environment, a crucial 

insight for aviation logistics firms operating in a multi-polar trade world. Dolgui et al. [3] 

reviewed quantitative models for supply chain resilience, highlighting the need for frameworks 

that integrate both operational (e.g., rerouting) and strategic (e.g., nearshoring) decision-making. 

Specific to aviation, Gardiner and Ison [4] explored the strategic responses of air cargo carriers, 

including network flexibility (using smaller, more versatile aircraft), fleet diversification, and 

the pursuit of new growth markets not affected by tariffs. Wandelt et al. [11] applied complex 

network theory to global air routes, demonstrating that resilience is highly dependent on a few 
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critical hubs (e.g., Anchorage, Dubai, Shanghai), which are themselves vulnerable to policy 

shifts, creating systemic risk. Park et al. [10] emphasized the role of digitalization and data 

analytics in building resilient aviation logistics, allowing for more dynamic capacity 

management and route planning through tools like predictive demand forecasting and real-time 

risk dashboards. 

2.3 Computational Risk Models in Logistics 

Bayesian networks have gained traction in supply chain risk management due to their 

robustness in handling incomplete data and causal reasoning, which is endemic to complex 

global systems. Garvey et al. [5] extended their earlier work by using BNs to model disruption 

propagation in multi-echelon global supply chains, incorporating supplier reliability and 

transport risks. Their work demonstrated the "domino effect" where a delay in one node 

probabilistically impacts downstream nodes. Hosseini and Ivanov [6] presented a BN-based 

method for quantifying resilience in food supply chains, which are highly dependent on-air 

freight for perishables. They successfully integrated factors like temperature control failure and 

border delays into a unified risk model. Most pertinently, Wang et al. [12] successfully applied 

a BN to humanitarian supply chain performance evaluation, demonstrating its utility in high-

uncertainty, data-scarce environments—a context analogous to the uncertainty wrought by 

trade wars. Their work validates the choice of BN for this study, as it can formally combine 

hard data with expert judgment where historical data is lacking or not directly applicable. 

Despite these advances, a dedicated, empirically-informed BN framework for assessing the 

multi-dimensional impact of trade tensions specifically on aviation logistics remains absent. 

Most studies focus on either the macroeconomic trade effects or on generic supply chain 

resilience, without delving into the unique operational realities of air cargo—its cost structure, 

capacity constraints, regulatory environment, and critical role in high-value chains. This study 

synthesizes these research streams to fill this critical gap, providing a tailored analytical tool 

for this vital sector. 

3 Methodology 

3.1 Bayesian Network Design and Rationale 

A Bayesian Network is a probabilistic graphical model that represents a set of variables and 

their conditional dependencies via a directed acyclic graph (DAG). Its capacity to handle 

uncertainty, integrate diverse data types (both hard data and expert judgment), and perform 

bidirectional inference (predictive and diagnostic) makes it exceptionally suitable for modeling 
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the complex, non-linear risks in aviation logistics stemming from trade tensions. The model 

allows us to move from simplistic, deterministic correlations to a nuanced understanding of 

probabilistic causality, answering questions like: "Given that tariffs are high, what is the 

probability that operating costs will become unsustainable, and how does that probability 

change if we also know that fuel prices are volatile?" 

 

Figure 1. Bayesian Network Design and Rationale 

The constructed BN comprises 22 nodes, strategically organized into a three-layer 

hierarchical structure that mirrors the causal flow of risk from root causes to final outcomes. 

This structure was developed through an iterative process involving a review of the literature 

cited in Section 2 and structured interviews with five industry experts from major air cargo 

carriers and logistics consultancies. 

(1) Root Layer (Exogenous Variables). This layer consists of factors that are external drivers 

of risk, largely outside the direct control of logistics firms. These are the primary levers of the 

trade war. 

• N1: Tariff Level (High, Low) 
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• N2: Trade Policy Uncertainty (High, Low) - capturing the unpredictability of new policy 

announcements. 

• N3: Bilateral Relations (Strained, Stable) - encompassing diplomatic tensions beyond 

pure trade. 

• N4: Fuel Price Volatility (High, Low) - a key cost driver exacerbated by economic 

uncertainty. 

• N5: Currency Exchange Fluctuation (High, Low) - impacting the cost of operations and 

goods. 

(2) Intermediate Layer (Operational Variables). This layer captures the direct operational 

consequences of the root factors. These are the mediating variables through which external 

shocks affect performance. 

• N6: Cargo Demand Volatility (High, Low) 

• N7: Operating Cost Pressure (High, Low) 

• N8: Fleet Utilization Rate (Low, High) 

• N9: Regulatory Compliance Burden (High, Low) - includes increased customs 

paperwork and scrutiny. 

• N10: Route Availability (Restricted, Unrestricted) - reflecting the cancellation or 

reduction of flights. 

• N11: Yield Management Complexity (High, Low) - the challenge of profitably pricing 

capacity amid demand swings. 

(3) Outcome Layer (Performance Metrics). This layer represents the ultimate performance 

indicators for the aviation logistics network, which are the focus of managerial and strategic 

concern. 

• N12: Logistics Efficiency (Degraded, Optimal) - a measure of on-time performance and 

cost-effectiveness. 

• N13: Overall Network Resilience (Low, High) - the ability to maintain function and 

recover from disruptions. 

3.2 Node Definition and Conditional Probability Specification 

Prior probabilities for root nodes were established based on historical data from the 2018-

2020 period. For example: 
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• P(N1 = High) = 0.65, reflecting the extensive tariff coverage during the trade war's peak. 

• P(N2 = High) = 0.75, capturing the pervasive uncertainty regarding future policy 

announcements. 

• P(N4 = High) = 0.5, based on the observed volatility in jet fuel prices linked to trade-

related economic sentiment. 

Conditional Probability Tables (CPTs) for nodes with single parents were defined using a 

combination of historical data analysis and expert elicitation from industry professionals. For 

instance: 

• Cargo Demand (N6) is directly influenced by Tariff Level (N1) and Policy Uncertainty 

(N2). The CPT was specified through expert consensus: 

o P(N6=High | N1=High, N2=High) = 0.15 (Demand is very likely low under high 

tension) 

o P(N6=High | N1=High, N2=Low) = 0.40 

o P(N6=High | N1=Low, N2=High) = 0.60 

o P(N6=High | N1=Low, N2=Low) = 0.85 

For aggregation nodes with multiple parents (e.g., N7: Operating Cost Pressure, which 

depends on N1, N4, N5), the Noisy-OR model was employed to manage parameter scalability. 

This canonical model requires only two parameters per parent: a causal probability 𝑝𝑖  that 

parent 𝑖  alone can cause the effect, and a "leak" probability 𝑝𝑙𝑒𝑎𝑘  accounting for unknown 

causes. The probability of the effect being absent is: 

𝑃(𝐸𝑓𝑓𝑒𝑐𝑡 = 𝐹𝑎𝑙𝑠𝑒 | 𝑃𝑎𝑟𝑒𝑛𝑡𝑠) = (1 − 𝑝𝑙𝑒𝑎𝑘) ∗ ∏(1 − 𝑝𝑖) for all parents where 𝑖 is true. 

The parameters for the Noisy-OR gates were set through expert workshops: 

• For N7 (Operating Cost Pressure): 𝑝𝑡𝑎𝑟𝑖𝑓𝑓 = 0.6, 𝑝𝑓𝑢𝑒𝑙 = 0.7, 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 = 0.5, 𝑝𝑙𝑒𝑎𝑘 = 

0.05. 

• This reflects the strong influence of fuel costs and the significant, but slightly less direct, 

impact of tariffs on overall expenses. 

3.3 Case Study Integration: The US-China Trade War (2018-2020) 

To ground the model in reality and validate its outputs, we integrated a focused case study 

on the US-China trade war. Evidence was entered into the BN as "findings" to reflect the 

historical context of the period: N1=High (tariffs imposed), N2=High (high 

uncertainty), N3=Strained. The model's subsequent predictions regarding cargo demand (N6), 
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operating costs (N7), and ultimately logistics efficiency (N12) were then compared against 

actual industry performance data from IATA and airline financial reports from this period. For 

example, the model predicted a ~70% probability of low cargo demand, which aligned with the 

5.6% overall market decline reported by IATA, a figure that masked much steeper declines on 

specific transpacific routes. This close alignment between the model's outputs and real-world 

outcomes confirmed its validity and utility for predictive analysis and strategic planning. 

4 Results and Analysis 

4.1 Model Inference and Risk Propagation 

The BN was implemented using the GeNIe Modeler software. Under a baseline "High-

Tension" scenario (mirroring the 2018-2020 period), the model predicts a 72% probability of 

Low Cargo Demand (N6) and an 81% probability of High Operating Cost Pressure (N7). This 

combination propagates through the network, resulting in a 68% probability of Degraded 

Logistics Efficiency (N12) and a 63% probability of Low Overall Network Resilience (N13). 

This quantifies the severe operational impact that was anecdotally reported by industry during 

the trade war. 

Predictive "what-if" analysis was conducted to evaluate mitigation strategies. For example, 

simulating a scenario where a logistics firm successfully diversifies its routes and sourcing 

(setting N10 = Unrestricted and indirectly influencing N6 by reducing dependency on China) 

even under high tariffs reduces the probability of degraded efficiency from 68% to 55%. 

Similarly, hedging against fuel and currency volatility (effectively reducing the states of N4 

and N5 to Low) significantly alleviates cost pressure, reducing the probability of N7 being High 

from 81% to 60%. 

4.2 Diagnostic Insights and Strategic Suggestions 

Diagnostic reasoning identifies the most probable root causes of observed disruptions. If a 

logistics firm experiences degraded efficiency (N12=Degraded), the model calculates the 

following probabilities for the primary contributors: 

• High Operating Cost Pressure (N7): 88% 

• Low Cargo Demand (N6): 79% 

• High Yield Management Complexity (N11): 72% 

This analysis moves beyond correlation to suggest causality, leading to the following 

evidence-based suggestions for aviation logistics stakeholders: 
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(1) Strategic Diversification. Reduce dependency on any single trade corridor. Develop 

robust networks in emerging markets (e.g., Southeast Asia, India) to rebalance capacity away 

from conflict zones. This directly tackles the demand volatility (N6) identified as a key 

contributor. 

(2) Financial Hedging. Implement sophisticated fuel and currency hedging programs to 

insulate operations from the volatility exacerbated by trade tensions. This is a direct mitigation 

strategy for the high operating cost pressure (N7). 

(3) Dynamic Pricing and Capacity Management. Invest in AI-driven revenue management 

systems that can rapidly adjust pricing and allocate capacity in response to volatile demand 

signals. This addresses the yield management complexity (N11) that erodes profitability during 

disruptions. 

(4) Policy Engagement and Advocacy. Actively engage with policymakers and industry 

groups (e.g., IATA, ICAO) to articulate the economic costs of trade disputes and advocate for 

stable, predictable trade policies. This is a long-term strategy aimed at the root nodes (N1, N2, 

N3). 

(5) Supply Chain Consultation. Offer high-value consulting services to clients, helping them 

redesign their supply chains for resilience, which can include inventory positioning and modal 

shifts, thereby secure long-term partnerships and creating a new revenue stream that is counter-

cyclical to disruption. 

5 Conclusion and Future Strategies 

This study has developed and validated a Bayesian Network model to quantify the impact of 

tariffs and trade tensions on global aviation logistics. The model captures the complex, 

probabilistic interdependencies between policy, economic, and operational variables, providing 

a powerful tool for both predictive risk assessment and diagnostic root-cause analysis. The case 

study of the US-China trade war confirms the model's accuracy in simulating real-world 

outcomes, notably the severe impact on cargo demand, operating costs, and overall network 

efficiency. The findings underscore the extreme vulnerability of highly optimized, globalized 

aviation logistics networks to geopolitical friction. In an era where protectionist sentiments and 

economic nationalism are resurgent, proactive risk management is not optional but essential for 

survival and competitiveness. 

Building on this framework, future efforts should focus on: 

(1) Dynamic Modeling. Developing a Dynamic Bayesian Network (DBN) to incorporate 
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temporal elements, such as the lagged effects of policy announcements or seasonal demand 

fluctuations, creating a more realistic time-aware model. 

(2) Real-Time Integration. Creating a digital twin of the aviation logistics network that 

integrates real-time data feeds on tariffs, fuel prices, currency rates, and cargo bookings to 

enable live risk monitoring and decision support. 

(3) Multi-Modal Expansion. Extending the model to include ocean and surface freight 

options, allowing for holistic, multi-modal logistics optimization under trade disruption 

scenarios, capturing modal shift opportunities. 

(4) Machine Learning Enhancement. Employing machine learning techniques, particularly 

from historical data, to continuously refine and update the conditional probabilities within the 

BN, enhancing its predictive accuracy over time and reducing reliance on static expert 

elicitation. 

(5) Broader Application: Adapting the framework to model the impact of other geopolitical 

risks, such as sanctions (e.g., Russia-Ukraine conflict) or global pandemics, on logistics 

networks, building a generalized toolkit for global supply chain risk management. 

By adopting such advanced, data-driven strategies, aviation logistics organizations can 

transition from being passive victims of geopolitical events to active, resilient, and adaptive 

players in the global economy. This research provides the foundational model and strategic 

roadmap to begin that critical transition. 
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