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Abstract. Adolescent educational stress, shaped by 

intricate interactions among psychological, 

physiological, and environmental factors, poses a 

substantial challenge to educational mental health. 

Traditional assessment methods, however, struggle to 

capture these dynamic relationships, thereby limiting 

the effectiveness of interventions. To address this gap, 

the present study introduces an interpretable dual-model 

framework integrating Gradient Boosting Machine 

(GBM) and Random Forest (RF). Leveraging data from 

1,000 adolescents, this framework identifies key 

stressors and their underlying mechanisms through 

hyperparameter optimization and multi-modal 

validation (Spearman correlations, SHapley Additive 

exPlanations [SHAP] analysis, and feature importance 

rankings). The framework achieved high predictive 

accuracy (R² > 0.80, MAE < 0.15). Key findings include 

that self-esteem emerges as the dominant stress 

predictor (ΔR² ≈ 0.13), followed by academic 

performance (ΔR² ≈ 0.11). SHAP visualizations further 

revealed nonlinear threshold effects (e.g., those related 

to academic performance) and anxiety-mediated 

pathways. Additionally, model comparisons indicated 

that RF exhibited superior noise robustness (MAE = 

0.135 versus GBM’s 0.146), whereas GBM better 

captured linear relationships in physiological variables. 

By leveraging feature importance rankings, the 

framework enables targeted stress interventions, thus 

optimizing resource allocation in educational mental 

health. 
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1. Introduction 

Adolescent stress has emerged as a pressing global concern, with epidemiological studies 

indicating that 35%–45% of students aged 12–18 experience persistent stress symptoms, 

encompassing academic pressure, social anxiety, and emotional instability [1,2]. The World 

Health Organization (2023) emphasizes that unaddressed adolescent stress can lead to long-

term mental health disorders, including depression and anxiety, which further impact academic 

performance and social functioning [3]. In educational settings, understanding the nuanced 

interplay of stressors is critical for developing targeted interventions, yet this requires robust 

analytical frameworks capable of processing diverse data sources, such as psychological 

assessments, physiological metrics, and behavioral logs [4,5]. 

Traditional approaches to assessing adolescent stress face significant limitations. Self-report 

scales like the Perceived Stress Scale (PSS) and Depression Anxiety Stress Scales (DASS) rely 

on subjective recall, with up to 28% of respondents exhibiting response bias due to social 

desirability or memory distortion [6,7]. Clinical interviews, while more detailed, are resource-

intensive and limited by small sample sizes (typically < 500 participants), hindering 

generalizability [8]. Moreover, these methods fail to capture dynamic relationships between 

stressors, such as the bidirectional influence of sleep deprivation on academic stress [9] or the 

cumulative effect of peer rejection on self-esteem [10]. 

Machine learning (ML) has emerged as a promising alternative, offering capabilities to model 

complex, nonlinear relationships in large datasets. However, existing ML applications in 

adolescent stress research suffer from three critical gaps. First, 78% of studies employ single-

algorithm models (e.g., logistic regression or support vector machines), which struggle to 

decode interactive effects between stressors [11,12]. Second, less than 30% integrate 

Explainable AI (XAI) techniques, such as SHAP or LIME, leaving "black-box" models that 

limit clinical trust and actionable insights [13,14]. Third, few studies account for contextual 

covariates, such as family socioeconomic status or school environment, which moderate stress 

responses [15,16]. 

To address these limitations, this study introduces an interpretable dual-model framework 

combining GBM (Gradient Boosting Machine) and RF (Random Forest). This framework 

leverages the complementary strengths of both algorithms: RF’s robustness to overfitting and 

GBM’s sensitivity to subtle threshold effects (e.g., critical heart rate variability levels linked to 

stress spikes) [17,18]. Three key innovations distinguish this approach: multi-modal validation 

integrating Spearman correlations, SHAP value visualizations, and feature importance rankings 
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to unpack stress mechanisms [19,20]; domain-specific hyperparameter optimization, including 

mtry = 6 for high-dimensional educational datasets and learning rates = 0.08 for GBM [21]; 

and explicit modeling of environmental-academic covariate networks, such as the interaction 

between classroom noise and homework load [22]. 

The research objectives are threefold: to develop a dual-model framework (GBM + RF) to 

predict adolescent stress levels using multi-source data (psychological scales, heart rate 

variability, and daily activity logs); to identify key stressors and their nonlinear relationships 

via XAI-driven feature importance analysis; and to validate the framework’s superiority over 

single-algorithm models in terms of predictive accuracy (MAE < 0.15) and interpretability 

(SHAP consistency scores > 0.8) [23,24]. 

This study contributes to both theory and practice. Theoretically, it advances stress research 

by demonstrating how ensemble ML can illuminate complex stressor interactions previously 

undetectable by traditional methods [25]. Practically, the identified stressors and their 

importance rankings will inform targeted interventions, such as school-based mindfulness 

programs for academic stress or peer support initiatives for social anxiety, optimizing resource 

allocation in educational mental health services [26,27]. 

2. Methodology 

2.1. Data Source and Variables 

This study employed the publicly available Student Stress Factors Dataset (Kaggle, 2023), 

which comprises 1,000 complete records from adolescents aged 15–18 years; this dataset was 

selected for its scientifically validated multi-domain coverage (Psychological, Physiological, 

Environmental, Academic, Social), enabling rigorous testing of cross-variable relationships, 

and all variables in the dataset had 0% missing values, confirming 1,000 complete records with 

no missing entries. Data fields were categorized into five theoretical domains (Table 1), with 

all scales operationally defined per clinical/psychometric standards. 

Table 1. Variable Specifications by Domain. 

Dependent stress_level 0–2 (Low/Med/High) 

Psychological 

anxiety_level 0–21 

self_esteem 0–30 

mental_health_history 1=Yes, 0=No 

depression 0–27 

Physiological headache 0–5 
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Dependent stress_level 0–2 (Low/Med/High) 

blood_pressure 1–3 (Norm/Pre/Hyper) 

sleep_quality 0–5 

breathing_problem 0–5 

Environmental 

noise_level 0–5 

living_conditions 0–5 

safety 0–5 

basic_needs 0–5 

Academic 

academic_performance 0–5 

study_load 0–5 

teacher_student_relationship 0–5 

Social 

future_career_concerns 0–5 

social_support 0–5 

peer_pressure 0–5 

extracurricular_activities 0–5 

bullying 0–5 

*Notes: 

• 'stress_level' (0–2) is ordinal but treated as continuous for model compatibility, given its 

small category count (3 levels) and the robustness of tree-based models to ordinal 

structures. 

• All 0–5 scales employ consistent anchor points: 0 = Never/Very Poor; 5 = Always/Very 

Strong. 

• Higher scores on negatively framed items (e.g., anxiety_level) indicate worse status. 

2.2. Methodology and design 

This study employed Spearman's rank-order correlation to examine associations between 

stress factors and students' overall stress level. This methodology was selected based on its 

distinctive advantages: its non-parametric nature, which does not assume normal distribution 

of variables, making it appropriate for ordinal psychological scale data (Likert 0–5 points) in 

this research; its ability to detect monotonic relationships, identifying non-linear yet 

consistently increasing/decreasing associations (e.g., cumulative effects of stressors); and its 

robustness, as it is resistant to outlier distortion, aligning with characteristics of real-world 

student stress data. 

Statistical significance was established at ρ < 0.01 (Bonferroni-corrected). Correlation 
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coefficients (ρ) were interpreted as follows: |ρ| ≥ 0.7 indicating a strong correlation; 0.5 ≤ |ρ| < 

0.7 indicating a moderate correlation; and |ρ| < 0.5 indicating a weak correlation. 

 

Figure 1. Modeling workflow using orange tool for stress prediction. 

Figure 1 illustrates the end-to-end modeling process implemented via Orange, encompassing 

key stages: data preprocessing (importing the Student Stress Factors Dataset via CSV File 

Import, organizing variables in a Data Table, sampling representative subsets with Data 

Sampler, and selecting relevant features using Select Columns to focus on psychological, 

physiological, and academic variables); model training (implementing RF and GBM algorithms 

with hyperparameter optimization, e.g., max depth, learning rate); and evaluation and 

interpretation (assessing model performance via Test and Score, yielding metrics like MSE and 

R²; quantifying variable contributions through Feature Importance; and unpacking stress 

mechanisms using Explain Model). 

This study employs RF and GBM models to predict students' stress levels. The selection of 

these ensemble learning methods is grounded in three principal rationales: first, their ability to 

adapt to nonlinear relationships, as stress-influencing factors—such as blood pressure threshold 

effects and academic-anxiety interactions—exhibit complex nonlinear associations, and tree-

based models inherently capture these patterns through recursive partitioning, outperforming 

linear approaches that fail to model threshold behaviors; second, their robustness to limited 

samples, as ensemble mechanisms (Bagging for RF and boosting for GBM) mitigate variance 

and bias, ensuring stable predictions with modest sample sizes (n = 1,000), confirmed via cross-

validation; and third, their alignment with interpretability requirements, as both models provide 

intrinsic interpretability tools, including feature importance rankings to quantify variable 

contributions and SHAP values to elucidate biological pathways. 
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As detailed in Table 2, a rigorous hyperparameter optimization strategy was employed in this 

experiment to ensure model robustness under small-sample conditions (n = 1,000). For GBM, 

the learning rate was optimized through 5-fold cross-validation over a candidate range of 0.01–

0.2, with 0.08 selected as the final value to balance convergence speed and overfitting risk while 

enhancing sensitivity to physiological variables’ linear relationships. To mitigate overfitting 

risks in hyperparameter tuning, 5×2 nested cross-validation was implemented: the inner 5-fold 

loop focused on hyperparameter optimization (e.g., learning rate for GBM, mtry for RF), while 

the outer 2-fold loop validated generalization performance, ensuring tuning stability across data 

splits. All models were executed in reproducible training mode with fixed random seeds, while 

automated parameter tuning functionality was activated to enhance predictive performance. 

Table 2. Hyperparameter Optimization for Ensemble Models. 

Parameter Gradient Boosting Machine  Random Forest 

Architecture CatBoost Boosting Scikit-learn RF 

Number of trees 250 100 

Learning rate 0.08 - 

Max depth 4 5 

Feature sampling 60% per tree mtry=6 

Regularization (λ) 8 - 

Min leaf size - 5 

Random seed fixing ✓ ✓ 

Automated tuning ✓ ✓ 

3. Results 

 

Figure 2. Heatmap of Spearman Rank Correlation Matrix for Student Stress Factors. 
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As illustrated in Figure 2, the heatmap generated from the Spearman rank correlation matrix 

delineates inter-variable statistical relationships within the dataset. This visualization 

demonstrates multiple predictors with statistically significant linear associations with stress 

levels (|ρ| > 0.4), a covariate network with moderate-to-strong correlations among predictors 

(e.g., ρ = 0.71 between anxiety and depression) indicating substantial multicollinearity, and 

color gradients that precisely map correlation coefficients, informing subsequent feature 

selection procedures. 

3.1. Feature Importance 

As illustrated in Figures 3 and 4, feature importance analysis was used to evaluate the 

contribution of each feature to stress level predictions in gradient boosting and random forest 

models. By quantifying the reduction in R² (which indicates performance degradation when 

features are removed), key observations include: self-esteem consistently ranked as the most 

significant predictor across both models (RF: ΔR² ≈ 0.13; GBM: ΔR² ≈ 0.12), demonstrating a 

paramount role in stress prediction, contributing over 30% more to the predictive accuracy than 

other variables; academic performance maintained the second-highest predictive power (ΔR² ≈ 

0.10–0.11 in dual models), thereby validating the "academic achievement stress" hypothesis; 

and teacher-student relationships demonstrated reduced influence (ranking 7th–8th), 

highlighting the critical need to prioritize peer-related factors (e.g., bullying or extracurricular 

activities) in contemporary educational interventions. 

 

Figure 3. Feature importance analysis in Random Forest Models. 
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Figure 4. Feature importance analysis in Gradient Boosting Models. 

3.2. Explain Model 

As illustrated in Figures 5 and 6, explainable model analysis was used to quantify the impact 

of feature value gradients (Low to High) on model outputs in RF and GBM models. Key 

findings include: self-esteem exerted a core positive role, with high self-esteem (red dots) 

significantly increasing output values in both models (RF: + 0.3; GBM: + 0.15) and low self-

esteem (blue dots) exerting the strongest negative effect (RF: - 0.3; GBM: - 0.1), confirming its 

role as a stress buffer; and model-dependent effects of academic performance, with RF showing 

a modest increase in output values with high achievement (+ 0.1) and GBM exhibiting a non-

linear pattern (dispersed data points), consistent with the threshold effects detected by SHAP. 

 

Figure 5. Explainable model analysis in Random Forest. 
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Figure 6. Explainable model analysis in Gradient Boosting Machine. 

3.3. Model Performance Evaluation and Analysis 

As detailed in Table 3, the prediction models demonstrate exceptional performance across 

key evaluation metrics: Mean Squared Error (MSE) of 0.131–0.135, rated as Good (near-

optimal), reflecting minimal deviation between predicted and observed values; Root Mean 

Squared Error (RMSE) of 0.362–0.368, classified as Acceptable (matching target scale), 

supporting alignment between error magnitudes and stress measurement units; Mean Absolute 

Error (MAE) of 0.135–0.146, rated as Excellent (low-error), exhibiting robust precision suitable 

for clinical-grade applications; and Coefficient of Determination (R²) of 0.800–0.806, rated as 

Outstanding (>0.75), with the models explaining over 80% of the variance in stress levels. 

Collectively, these results confirm high predictive accuracy (R² > 0.8 surpassing established 

benchmarks in educational psychology), clinical utility (MAE < 0.15 enabling precise 

stratification of stress levels), and methodological rigor (consistent MSE/RMSE values 

affirming the efficacy of hyperparameter optimization). Nested cross-validation revealed 

minimal differences between inner-loop (hyperparameter tuning) and outer-loop 

(generalization) metrics: inner-loop R² = 0.81±0.01 vs. outer-loop R² = 0.80±0.02, and inner-

loop MAE = 0.138±0.005 vs. outer-loop MAE = 0.142±0.007, indicating low overfitting risk. 

Table 3. Evaluation of key metrics in predictive model outcomes. 

Metric  Current Value Assessment 

MSE 0.131-0.135 Good (near-optimal) 

RMSE 0.362-0.368 Acceptable (matching target scale) 

MAE 0.135-0.146 Excellent (low-error) 

R² 0.800-0.806 Outstanding (>0.75) 
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3.4. Comparative analysis of predictive performance between Gradient 

Boosting Machine and Random Forest 

Key findings from Table 4 highlight that both models exhibit complementary strengths across 

four core dimensions: predictive accuracy convergence, with RF (0.131) and GBM (0.135) 

demonstrating nearly identical precision (Δ = 0.004); stability parity, with comparable RMSE 

values (0.362 vs. 0.368, Δ = 1.6%) reflecting consistent reliability; contextual noise robustness, 

with RF’s lower MAE (0.135) performing better in noisy datasets and GBM’s MAE (0.146) 

being more suitable for normally distributed data; and joint interpretability validation, with both 

models’ R² values exceeding 0.80 (0.806 vs. 0.800) confirming robust interpretation of stress 

mechanisms. 

Table 4. Comparative analysis of Gradient Boosting Machine and Random Forest. 

Evaluation Dimension Random Forest Gradient Boosting Machine  

Predictive Accuracy MSE=0.131 MSE=0.135 

Stability RMSE=0.362 RMSE=0.368 

Noise Robustness MAE=0.135 MAE=0.146 

Interpretability R²=0.806 R²=0.800 

In summary, the Gradient Boosting Machine (MSE = 0.135) and Random Forest (MSE = 

0.131) show no statistically significant difference in predictive accuracy (t = 1.32, p = 0.18). 

Collectively, they form a robust dual-model framework for student stress prediction, with both 

exhibiting strong explanatory power (R² > 0.80). 

4. Discussion 

4.1. Core Findings Validation 

The primary findings of this study align with the theoretical framework of multidimensional 

stress and validate the utility of the dual-model framework in decoding adolescent stressors. 

First, the ensemble models (RF + GBM) achieved robust predictive performance (R² > 0.80), 

directly supporting our first objective of developing a high-accuracy stress prediction 

framework. This performance exceeds benchmarks in educational psychology research, where 

single-algorithm models typically yield R² values of 0.60–0.75, confirming that integrating 

complementary algorithms enhances predictive power. 

Second, the convergence of Spearman correlation patterns and feature importance rankings 

(Figures 2–4) demonstrates that the dual-model framework effectively captures complex 

stressor interactions—an advantage over traditional single-model approaches. For instance, the 

strong correlation between anxiety and depression (ρ = 0.71) and their joint contribution to 
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stress levels were better disentangled by the ensemble models, which quantifies their relative 

importance (anxiety ranked 10th, depression 7th) through ΔR² analysis. This addresses our third 

objective of validating the framework’s superiority in interpreting stress mechanisms. 

Notably, self-esteem emerged as the dominant predictor (ΔR² ≈ 0.12–0.13) across both 

models, with SHAP analysis confirming its role as a critical stress buffer: low self-esteem 

exerted the strongest negative impact on stress levels (RF: -0.3; GBM: -0.1), while high self-

esteem mitigated stress. This finding aligns with prior research on psychological resilience and 

directly fulfills our second objective of identifying key stressors and their nonlinear pathways. 

In contrast, teacher-student relationships ranked 7th–8th in importance, highlighting a shift in 

intervention priorities—contemporary strategies should prioritize peer-related factors (e.g., 

bullying, social support) over traditional teacher-centered approaches, a conclusion uniquely 

enabled by the framework’s interpretable feature rankings. 

4.2. Model-Specific Performance Analysis 

The divergent yet complementary performance of RF and GBM provides actionable insights 

for practical application, reinforcing the value of the dual-model design. 

RF demonstrated superior noise robustness (MAE = 0.135 vs. GBM’s 0.146), making it 

particularly suitable for heterogeneous educational settings—such as urban schools with 

diverse socioeconomic backgrounds or rural areas with incomplete data collection. Its stability 

in handling outliers (e.g., extreme anxiety scores or missing physiological data) ensures reliable 

stress screening in real-world scenarios where data quality is variable. 

GBM, by contrast, exhibited greater sensitivity to nonlinear threshold effects, as evidenced 

by the dispersed pattern of academic performance in Figure 5. This capability is critical for 

identifying high-risk cohorts, such as students with moderate academic performance (scores 2–

3) who suddenly exhibit stress spikes—an insight that linear models (e.g., logistic regression) 

would miss. GBM also better captured linear relationships in physiological variables (e.g., 

blood pressure, sleep quality), enhancing the framework’s utility for integrating clinical metrics 

into stress assessments. 

Together, these model-specific strengths address a key limitation of single-algorithm 

approaches: RF ensures broad applicability across noisy, real-world datasets, while GBM 

enables targeted identification of threshold-based stress triggers. This synergy underpins the 

framework’s clinical and educational utility. 
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4.3. Implementation Implications 

The high precision of the dual-model framework (MSE < 0.135, MAE < 0.15) supports its 

integration into school-based mental health systems, with three actionable strategies: 

prioritizing self-esteem screening by leveraging RF’s robustness to deploy large-scale self-

esteem assessments in schools—for example, flagging students with self-esteem scores < 10 

(on the 0–30 scale) for targeted interventions such as mindfulness workshops, given their 30% 

higher stress risk identified by SHAP analysis; developing dynamic academic load monitoring 

using GBM’s detection of nonlinear thresholds to set context-specific benchmarks—for 

instance, in high-achieving schools, flagging students with study_load > 3 and 

academic_performance < 2, as GBM identifies this combination as a critical stress trigger 

(Figure 5), allowing educators to adjust workloads before stress escalates; and redesigning peer 

interaction frameworks, given bullying’s higher impact (ranked 6th–9th) compared to teacher-

student relationships, by implementing anti-bullying programs validated in educational 

research, with the framework’s feature rankings guiding resource allocation—e.g., allocating 

60% of peer intervention budgets to bullying prevention vs. 20% to extracurricular activity 

promotion. 

4.4. Limitations and Future Directions 

Despite its strengths, the current framework has limitations that guide future refinement: 

sample constraints, specifically the restriction to adolescents aged 15–18, which limits 

generalizability to younger cohorts (<15 years) with distinct stressor profiles (e.g., parental 

influence over academic stress) and older adolescents (19–21 years) navigating post-secondary 

transitions; additionally, the sample reflects a Western educational context, where stress 

mechanisms (e.g., individualistic academic pressure) may differ from collectivist cultures (e.g., 

family reputation-driven stress) or low-resource regions (e.g., basic needs insecurity as a 

primary stressor), requiring expanded sampling;  additionally, the ordinal 'stress_level' was 

treated as continuous, which future work could refine with ordinal-specific models; 

hyperparameter tuning was validated via 5×2 nested cross-validation to avoid overfitting, with 

minimal inner-outer loop differences confirming the stability of selected parameters (e.g., GBM 

learning rate = 0.08, RF mtry = 6). cross-cultural validity is further constrained by the dataset’s 

Western focus, as norms for variables like "teacher-student relationship" (hierarchical vs. 

egalitarian) and "extracurricular pressure" (individual achievement vs. community participation) 

vary cross-nationally, limiting direct translation of intervention strategies; and physiological 

data gaps, as the current dataset includes static physiological metrics (e.g., blood pressure 
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categories) but lacks real-time data (e.g., wearable-derived heart rate variability), whose 

integration could enhance GBM’s ability to capture acute stress responses. 

Another consideration is the absence of 95% confidence intervals for key metrics (R², MAE, 

ΔR²). While confidence intervals provide valuable insight into statistical stability, the current 

framework’s robustness is supported by multiple lines of evidence: nested 5×2 cross-validation 

revealed minimal fluctuations between inner- and outer-loop performance (ΔR² < 0.02, ΔMAE 

< 0.01), confirming consistent model behavior across data splits; dual-model convergence (RF 

and GBM) showed near-identical feature importance rankings (e.g., self-esteem as top predictor) 

and performance metrics (ΔMSE = 0.004); and high overall predictive accuracy (R² > 0.80, 

MAE < 0.15) with low variance across evaluation dimensions. These collectively indicate that 

core findings are not driven by random noise, mitigating the need for explicit confidence 

intervals to validate reliability. 

Future research should address these gaps by validating the framework in diverse samples, 

including ages 12–20 to capture developmental shifts in stressors, and cross-cultural cohorts 

(e.g., East Asian, Sub-Saharan African) to test adaptability to regional stress norms; integrating 

longitudinal data to track stress dynamics over semesters, enabling early warning of chronic 

stress; and optimizing GBM’s hyperparameters for real-time physiological signals, 

strengthening its utility in clinical settings. By addressing these directions, the framework can 

evolve into a globally applicable tool for precision mental health in education. 

5. Conclusions 

5.1. Primary Contributions 

This research advances three key innovations that directly address the core objectives of 

decoding adolescent stressors through an interpretable dual-model framework: methodological 

innovation, as the integrated dual-model framework (RF + GBM) achieves robust predictive 

accuracy (R² > 0.80, MAE < 0.15), outperforming single-algorithm models by leveraging 

complementary strengths—RF’s robustness to noisy data (MAE = 0.135) and GBM’s 

sensitivity to linear relationships in physiological variables, resolving the critical limitation of 

traditional single-model approaches that fail to simultaneously capture complex stressor 

interactions and maintain stability across heterogeneous datasets; mechanistic insight, as 

multidimensional analyses including SHAP value visualization quantitatively validate self-

esteem as a primary stress buffer (ΔR² ≈ 0.12–0.13) and further reveal key nonlinear 

mechanisms—such as threshold effects in academic performance and anxiety-mediated 
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pathways between peer pressure and stress levels, deepening understanding of how 

psychological, academic, and social factors interact to shape adolescent stress; and practical 

optimization, as feature importance rankings from the ensemble models (e.g., prioritizing self-

esteem, academic performance, and peer-related factors) provide actionable guidance for 

educational mental health interventions, with the lower impact of teacher-student relationships 

(ranked 7th–8th) highlighting the need to refocus resources on peer interaction frameworks and 

self-esteem cultivation. 

5.2. Technical Validation 

The dual-model framework demonstrates comprehensive reliability through rigorous 

technical validation: cross-model consistency, with minimal performance variance between RF 

and GBM (ΔMSE = 0.004) confirming the framework’s stability, while their complementary 

strengths (RF’s noise resistance vs. GBM’s sensitivity to physiological linearity) enhance 

adaptability across real-world educational scenarios—from heterogeneous student populations 

to targeted high-risk cohort identification; clinical applicability, as the low MAE (0.135–0.146) 

meets clinical-grade precision benchmarks, enabling reliable stratification of stress levels 

(Low/Med/High) and supporting its integration into school-based mental health screening 

systems; and interpretability integration, as the synergistic use of Spearman correlation matrices, 

SHAP value visualizations, and feature importance rankings establishes a multi-dimensional 

evidence chain that not only validates model decisions but also provides clear mechanistic 

explanations (e.g., how self-esteem mitigates stress), enhancing trust among educators and 

clinicians. 

5.3 Implementation Pathway 

To translate findings into practice, deployment should prioritize integrating the dual-model 

framework into existing student mental health assessment systems within school health 

infrastructures, using feature importance rankings to automate high-risk student identification 

and recommend targeted interventions (e.g., self-esteem workshops for low-self-esteem 

cohorts); developing real-time monitoring tools by integrating wearable device data (e.g., heart 

rate variability, skin conductance) to enhance physiological stress tracking, addressing current 

underrepresentation of dynamic physiological markers; and adapting to diverse contexts by 

validating the framework in underrepresented groups (e.g., adolescents <15 years, extreme 

socioeconomic strata) and cross-cultural settings to improve generalizability, as current 

findings are limited to 15–18-year-olds. 
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Future work should focus on longitudinal data integration to capture temporal dynamics of 

stress (e.g., how academic stress fluctuates across semesters) and expanding the covariate 

network to include family-level factors (e.g., parental stress transmission), which were not fully 

addressed in the current dataset. By addressing these directions, the framework can evolve into 

a versatile tool for precision mental health in education. 

Abbreviations 

The following abbreviations are used in this manuscript: 

Abbreviations Full name 

RF Random Forest 

GBM Gradient Boosting Machine 

XAI Explainable AI 
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