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Abstract. Adolescent educational stress, shaped by
intricate among psychological,
physiological, and environmental factors, poses a
substantial challenge to educational mental health.
Traditional assessment methods, however, struggle to
capture these dynamic relationships, thereby limiting

interactions

the effectiveness of interventions. To address this gap,
the present study introduces an interpretable dual-model
framework integrating Gradient Boosting Machine
(GBM) and Random Forest (RF). Leveraging data from
1,000 adolescents, this framework identifies key
stressors and their underlying mechanisms through
hyperparameter ~ optimization and  multi-modal
validation (Spearman correlations, SHapley Additive
exPlanations [SHAP] analysis, and feature importance
rankings). The framework achieved high predictive
accuracy (R?>0.80, MAE <0.15). Key findings include
that self-esteem emerges as the dominant stress
predictor (AR*> = 0.13), followed by academic
performance (AR* = 0.11). SHAP visualizations further
revealed nonlinear threshold effects (e.g., those related
to academic performance) and anxiety-mediated
pathways. Additionally, model comparisons indicated
that RF exhibited superior noise robustness (MAE =
0.135 versus GBM’s 0.146), whercas GBM better
captured linear relationships in physiological variables.
By leveraging feature importance rankings, the
framework enables targeted stress interventions, thus
optimizing resource allocation in educational mental
health.
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1. Introduction

Adolescent stress has emerged as a pressing global concern, with epidemiological studies
indicating that 35%45% of students aged 12-18 experience persistent stress symptoms,
encompassing academic pressure, social anxiety, and emotional instability [1,2]. The World
Health Organization (2023) emphasizes that unaddressed adolescent stress can lead to long-
term mental health disorders, including depression and anxiety, which further impact academic
performance and social functioning [3]. In educational settings, understanding the nuanced
interplay of stressors is critical for developing targeted interventions, yet this requires robust
analytical frameworks capable of processing diverse data sources, such as psychological

assessments, physiological metrics, and behavioral logs [4,5].

Traditional approaches to assessing adolescent stress face significant limitations. Self-report
scales like the Perceived Stress Scale (PSS) and Depression Anxiety Stress Scales (DASS) rely
on subjective recall, with up to 28% of respondents exhibiting response bias due to social
desirability or memory distortion [6,7]. Clinical interviews, while more detailed, are resource-
intensive and limited by small sample sizes (typically < 500 participants), hindering
generalizability [8]. Moreover, these methods fail to capture dynamic relationships between
stressors, such as the bidirectional influence of sleep deprivation on academic stress [9] or the

cumulative effect of peer rejection on self-esteem [10].

Machine learning (ML) has emerged as a promising alternative, offering capabilities to model
complex, nonlinear relationships in large datasets. However, existing ML applications in
adolescent stress research suffer from three critical gaps. First, 78% of studies employ single-
algorithm models (e.g., logistic regression or support vector machines), which struggle to
decode interactive effects between stressors [11,12]. Second, less than 30% integrate
Explainable Al (XAI) techniques, such as SHAP or LIME, leaving "black-box" models that
limit clinical trust and actionable insights [13,14]. Third, few studies account for contextual
covariates, such as family socioeconomic status or school environment, which moderate stress

responses [15,16].

To address these limitations, this study introduces an interpretable dual-model framework
combining GBM (Gradient Boosting Machine) and RF (Random Forest). This framework
leverages the complementary strengths of both algorithms: RF’s robustness to overfitting and
GBM’s sensitivity to subtle threshold effects (e.g., critical heart rate variability levels linked to
stress spikes) [17,18]. Three key innovations distinguish this approach: multi-modal validation

integrating Spearman correlations, SHAP value visualizations, and feature importance rankings
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to unpack stress mechanisms [19,20]; domain-specific hyperparameter optimization, including
mtry = 6 for high-dimensional educational datasets and learning rates = 0.08 for GBM [21];
and explicit modeling of environmental-academic covariate networks, such as the interaction

between classroom noise and homework load [22].

The research objectives are threefold: to develop a dual-model framework (GBM + RF) to
predict adolescent stress levels using multi-source data (psychological scales, heart rate
variability, and daily activity logs); to identify key stressors and their nonlinear relationships
via XAl-driven feature importance analysis; and to validate the framework’s superiority over
single-algorithm models in terms of predictive accuracy (MAE < 0.15) and interpretability

(SHAP consistency scores > 0.8) [23,24].

This study contributes to both theory and practice. Theoretically, it advances stress research
by demonstrating how ensemble ML can illuminate complex stressor interactions previously
undetectable by traditional methods [25]. Practically, the identified stressors and their
importance rankings will inform targeted interventions, such as school-based mindfulness
programs for academic stress or peer support initiatives for social anxiety, optimizing resource

allocation in educational mental health services [26,27].

2. Methodology

2.1. Data Source and Variables

This study employed the publicly available Student Stress Factors Dataset (Kaggle, 2023),
which comprises 1,000 complete records from adolescents aged 15—18 years; this dataset was
selected for its scientifically validated multi-domain coverage (Psychological, Physiological,
Environmental, Academic, Social), enabling rigorous testing of cross-variable relationships,
and all variables in the dataset had 0% missing values, confirming 1,000 complete records with
no missing entries. Data fields were categorized into five theoretical domains (Table 1), with

all scales operationally defined per clinical/psychometric standards.

Table 1. Variable Specifications by Domain.

Dependent stress_level 0-2 (Low/Med/High)
anxiety level 0-21
Psychological self esteem 0-30
mental_health_history 1=Yes, 0=No
depression 0-27

Physiological headache 0-5
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Dependent stress_level 0-2 (Low/Med/High)
blood pressure 1-3 (Norm/Pre/Hyper)
sleep_quality 0-5
breathing problem 0-5
noise_level 0-5
Environmental living_conditions 0-5
safety 0-5
basic_needs 0-5
academic_performance 0-5
Academic study load 0-5
teacher student relationship 0-5
future career concerns 0-5
social_support 0-5
Social peer_pressure 0-5
extracurricular_activities 0-5
bullying 0-5

*Notes:

e 'stress level' (0-2) is ordinal but treated as continuous for model compatibility, given its
small category count (3 levels) and the robustness of tree-based models to ordinal

structures.

e All 0-5 scales employ consistent anchor points: 0 = Never/Very Poor; 5 = Always/Very
Strong.

e Higher scores on negatively framed items (e.g., anxiety level) indicate worse status.

2.2. Methodology and design

This study employed Spearman's rank-order correlation to examine associations between
stress factors and students' overall stress level. This methodology was selected based on its
distinctive advantages: its non-parametric nature, which does not assume normal distribution
of variables, making it appropriate for ordinal psychological scale data (Likert 0—5 points) in
this research; its ability to detect monotonic relationships, identifying non-linear yet
consistently increasing/decreasing associations (e.g., cumulative effects of stressors); and its
robustness, as it is resistant to outlier distortion, aligning with characteristics of real-world

student stress data.

Statistical significance was established at p < 0.01 (Bonferroni-corrected). Correlation
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coefficients (p) were interpreted as follows: |p| > 0.7 indicating a strong correlation; 0.5 < |p| <

0.7 indicating a moderate correlation; and |p| < 0.5 indicating a weak correlation.
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Figure 1. Modeling workflow using orange tool for stress prediction.

Figure 1 illustrates the end-to-end modeling process implemented via Orange, encompassing
key stages: data preprocessing (importing the Student Stress Factors Dataset via CSV File
Import, organizing variables in a Data Table, sampling representative subsets with Data
Sampler, and selecting relevant features using Select Columns to focus on psychological,
physiological, and academic variables); model training (implementing RF and GBM algorithms
with hyperparameter optimization, e.g., max depth, learning rate); and evaluation and
interpretation (assessing model performance via Test and Score, yielding metrics like MSE and
R?; quantifying variable contributions through Feature Importance; and unpacking stress

mechanisms using Explain Model).

This study employs RF and GBM models to predict students' stress levels. The selection of
these ensemble learning methods is grounded in three principal rationales: first, their ability to
adapt to nonlinear relationships, as stress-influencing factors—such as blood pressure threshold
effects and academic-anxiety interactions—exhibit complex nonlinear associations, and tree-
based models inherently capture these patterns through recursive partitioning, outperforming
linear approaches that fail to model threshold behaviors; second, their robustness to limited
samples, as ensemble mechanisms (Bagging for RF and boosting for GBM) mitigate variance
and bias, ensuring stable predictions with modest sample sizes (n = 1,000), confirmed via cross-
validation; and third, their alignment with interpretability requirements, as both models provide
intrinsic interpretability tools, including feature importance rankings to quantify variable

contributions and SHAP values to elucidate biological pathways.
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As detailed in Table 2, a rigorous hyperparameter optimization strategy was employed in this
experiment to ensure model robustness under small-sample conditions (n = 1,000). For GBM,
the learning rate was optimized through 5-fold cross-validation over a candidate range of 0.01—
0.2, with 0.08 selected as the final value to balance convergence speed and overfitting risk while
enhancing sensitivity to physiological variables’ linear relationships. To mitigate overfitting
risks in hyperparameter tuning, 5x2 nested cross-validation was implemented: the inner 5-fold
loop focused on hyperparameter optimization (e.g., learning rate for GBM, mtry for RF), while
the outer 2-fold loop validated generalization performance, ensuring tuning stability across data
splits. All models were executed in reproducible training mode with fixed random seeds, while

automated parameter tuning functionality was activated to enhance predictive performance.

Table 2. Hyperparameter Optimization for Ensemble Models.

Parameter Gradient Boosting Machine Random Forest
Architecture CatBoost Boosting Scikit-learn RF
Number of trees 250 100
Learning rate 0.08 -

Max depth 4 5
Feature sampling 60% per tree mtry=6

Regularization (M) 8 -

Min leaf size - 5
Random seed fixing N v
Automated tuning v v
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Figure 2. Heatmap of Spearman Rank Correlation Matrix for Student Stress Factors.
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As illustrated in Figure 2, the heatmap generated from the Spearman rank correlation matrix
delineates inter-variable statistical relationships within the dataset. This visualization
demonstrates multiple predictors with statistically significant linear associations with stress
levels (|p| > 0.4), a covariate network with moderate-to-strong correlations among predictors
(e.g., p = 0.71 between anxiety and depression) indicating substantial multicollinearity, and
color gradients that precisely map correlation coefficients, informing subsequent feature

selection procedures.

3.1. Feature Importance

As illustrated in Figures 3 and 4, feature importance analysis was used to evaluate the
contribution of each feature to stress level predictions in gradient boosting and random forest
models. By quantifying the reduction in R? (which indicates performance degradation when
features are removed), key observations include: self-esteem consistently ranked as the most
significant predictor across both models (RF: AR* = 0.13; GBM: AR? = 0.12), demonstrating a
paramount role in stress prediction, contributing over 30% more to the predictive accuracy than
other variables; academic performance maintained the second-highest predictive power (AR? =
0.10-0.11 in dual models), thereby validating the "academic achievement stress" hypothesis;
and teacher-student relationships demonstrated reduced influence (ranking 7th—8th),
highlighting the critical need to prioritize peer-related factors (e.g., bullying or extracurricular

activities) in contemporary educational interventions.
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Figure 3. Feature importance analysis in Random Forest Models.
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Figure 4. Feature importance analysis in Gradient Boosting Models.

3.2. Explain Model

As illustrated in Figures 5 and 6, explainable model analysis was used to quantify the impact
of feature value gradients (Low to High) on model outputs in RF and GBM models. Key
findings include: self-esteem exerted a core positive role, with high self-esteem (red dots)
significantly increasing output values in both models (RF: + 0.3; GBM: + 0.15) and low self-
esteem (blue dots) exerting the strongest negative effect (RF: - 0.3; GBM: - 0.1), confirming its
role as a stress buffer; and model-dependent effects of academic performance, with RF showing
a modest increase in output values with high achievement (+ 0.1) and GBM exhibiting a non-

linear pattern (dispersed data points), consistent with the threshold effects detected by SHAP.
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Figure 5. Explainable model analysis in Random Forest.

8



Fei Gu, Rongrong Cai, Dongqin Jiang, Tao Jiang, Zijian Sun, Changsheng Ma

High

sell_esteem s s s s o o S MR ‘.. ..q.—..*........ PRIY o sme na e o

academic_performance * S SO0 GISS IR U WSS ¢ s e . .

]

b
&
sleep_quality s ®e —+— - e e mssanEne s & coliiilies
Low
headache . -*‘-0.-“ . -uM .o
safety -*0 sumes -* s e
extracurricular_activities uv-+- serem = = csliiie

basic_needs s ee “-_-u-
bullying . -%*
noise_level s mme " .: <

peer_pressure .. n+ *

T i T U T
-0.25 -0.2 -0.15 -01 -0.05 0 0.05 01 0.15 0.2 0.25
Impact on model output

Figure 6. Explainable model analysis in Gradient Boosting Machine.

3.3. Model Performance Evaluation and Analysis

As detailed in Table 3, the prediction models demonstrate exceptional performance across
key evaluation metrics: Mean Squared Error (MSE) of 0.131-0.135, rated as Good (near-
optimal), reflecting minimal deviation between predicted and observed values; Root Mean
Squared Error (RMSE) of 0.362-0.368, classified as Acceptable (matching target scale),
supporting alignment between error magnitudes and stress measurement units; Mean Absolute
Error (MAE) 0f 0.135-0.146, rated as Excellent (low-error), exhibiting robust precision suitable
for clinical-grade applications; and Coefficient of Determination (R?) of 0.800—0.806, rated as
Outstanding (>0.75), with the models explaining over 80% of the variance in stress levels.
Collectively, these results confirm high predictive accuracy (R* > 0.8 surpassing established
benchmarks in educational psychology), clinical utility (MAE < 0.15 enabling precise
stratification of stress levels), and methodological rigor (consistent MSE/RMSE values
affirming the efficacy of hyperparameter optimization). Nested cross-validation revealed
minimal differences between inner-loop (hyperparameter tuning) and outer-loop
(generalization) metrics: inner-loop R? = 0.81+0.01 vs. outer-loop R? = 0.80+0.02, and inner-

loop MAE = 0.13840.005 vs. outer-loop MAE = 0.142+0.007, indicating low overfitting risk.

Table 3. Evaluation of key metrics in predictive model outcomes.

Metric Current Value Assessment
MSE 0.131-0.135 Good (near-optimal)
RMSE 0.362-0.368 Acceptable (matching target scale)
MAE 0.135-0.146 Excellent (low-error)
R? 0.800-0.806 Outstanding (>0.75)
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3.4. Comparative analysis of predictive performance between Gradient
Boosting Machine and Random Forest

Key findings from Table 4 highlight that both models exhibit complementary strengths across
four core dimensions: predictive accuracy convergence, with RF (0.131) and GBM (0.135)
demonstrating nearly identical precision (A = 0.004); stability parity, with comparable RMSE
values (0.362 vs. 0.368, A = 1.6%) reflecting consistent reliability; contextual noise robustness,
with RF’s lower MAE (0.135) performing better in noisy datasets and GBM’s MAE (0.146)
being more suitable for normally distributed data; and joint interpretability validation, with both
models’ R? values exceeding 0.80 (0.806 vs. 0.800) confirming robust interpretation of stress

mechanisms.

Table 4. Comparative analysis of Gradient Boosting Machine and Random Forest.

Evaluation Dimension Random Forest Gradient Boosting Machine
Predictive Accuracy MSE=0.131 MSE=0.135
Stability RMSE=0.362 RMSE=0.368
Noise Robustness MAE=0.135 MAE=0.146
Interpretability R?=0.806 R?=0.800

In summary, the Gradient Boosting Machine (MSE = 0.135) and Random Forest (MSE =
0.131) show no statistically significant difference in predictive accuracy (t = 1.32, p = 0.18).
Collectively, they form a robust dual-model framework for student stress prediction, with both

exhibiting strong explanatory power (R? > 0.80).

4. Discussion

4.1. Core Findings Validation

The primary findings of this study align with the theoretical framework of multidimensional
stress and validate the utility of the dual-model framework in decoding adolescent stressors.
First, the ensemble models (RF + GBM) achieved robust predictive performance (R* > 0.80),
directly supporting our first objective of developing a high-accuracy stress prediction
framework. This performance exceeds benchmarks in educational psychology research, where
single-algorithm models typically yield R? values of 0.60—0.75, confirming that integrating

complementary algorithms enhances predictive power.

Second, the convergence of Spearman correlation patterns and feature importance rankings
(Figures 2—4) demonstrates that the dual-model framework effectively captures complex
stressor interactions—an advantage over traditional single-model approaches. For instance, the

strong correlation between anxiety and depression (p = 0.71) and their joint contribution to
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stress levels were better disentangled by the ensemble models, which quantifies their relative
importance (anxiety ranked 10th, depression 7th) through AR? analysis. This addresses our third

objective of validating the framework’s superiority in interpreting stress mechanisms.

Notably, self-esteem emerged as the dominant predictor (AR? = 0.12-0.13) across both
models, with SHAP analysis confirming its role as a critical stress buffer: low self-esteem
exerted the strongest negative impact on stress levels (RF: -0.3; GBM: -0.1), while high self-
esteem mitigated stress. This finding aligns with prior research on psychological resilience and
directly fulfills our second objective of identifying key stressors and their nonlinear pathways.
In contrast, teacher-student relationships ranked 7th—8th in importance, highlighting a shift in
intervention priorities—contemporary strategies should prioritize peer-related factors (e.g.,
bullying, social support) over traditional teacher-centered approaches, a conclusion uniquely

enabled by the framework’s interpretable feature rankings.

4.2. Model-Specific Performance Analysis
The divergent yet complementary performance of RF and GBM provides actionable insights

for practical application, reinforcing the value of the dual-model design.

RF demonstrated superior noise robustness (MAE = 0.135 vs. GBM’s 0.146), making it
particularly suitable for heterogeneous educational settings—such as urban schools with
diverse socioeconomic backgrounds or rural areas with incomplete data collection. Its stability
in handling outliers (e.g., extreme anxiety scores or missing physiological data) ensures reliable

stress screening in real-world scenarios where data quality is variable.

GBM, by contrast, exhibited greater sensitivity to nonlinear threshold effects, as evidenced
by the dispersed pattern of academic performance in Figure 5. This capability is critical for
identifying high-risk cohorts, such as students with moderate academic performance (scores 2—
3) who suddenly exhibit stress spikes—an insight that linear models (e.g., logistic regression)
would miss. GBM also better captured linear relationships in physiological variables (e.g.,
blood pressure, sleep quality), enhancing the framework’s utility for integrating clinical metrics

into stress assessments.

Together, these model-specific strengths address a key limitation of single-algorithm
approaches: RF ensures broad applicability across noisy, real-world datasets, while GBM
enables targeted identification of threshold-based stress triggers. This synergy underpins the

framework’s clinical and educational utility.

11
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4.3. Implementation Implications

The high precision of the dual-model framework (MSE < 0.135, MAE < 0.15) supports its
integration into school-based mental health systems, with three actionable strategies:
prioritizing self-esteem screening by leveraging RF’s robustness to deploy large-scale self-
esteem assessments in schools—for example, flagging students with self-esteem scores < 10
(on the 0-30 scale) for targeted interventions such as mindfulness workshops, given their 30%
higher stress risk identified by SHAP analysis; developing dynamic academic load monitoring
using GBM’s detection of nonlinear thresholds to set context-specific benchmarks—for
instance, in high-achieving schools, flagging students with study load > 3 and
academic performance < 2, as GBM identifies this combination as a critical stress trigger
(Figure 5), allowing educators to adjust workloads before stress escalates; and redesigning peer
interaction frameworks, given bullying’s higher impact (ranked 6th—9th) compared to teacher-
student relationships, by implementing anti-bullying programs validated in educational
research, with the framework’s feature rankings guiding resource allocation—e.g., allocating
60% of peer intervention budgets to bullying prevention vs. 20% to extracurricular activity

promotion.

4.4. Limitations and Future Directions

Despite its strengths, the current framework has limitations that guide future refinement:
sample constraints, specifically the restriction to adolescents aged 15-18, which limits
generalizability to younger cohorts (<15 years) with distinct stressor profiles (e.g., parental
influence over academic stress) and older adolescents (19-21 years) navigating post-secondary
transitions; additionally, the sample reflects a Western educational context, where stress
mechanisms (e.g., individualistic academic pressure) may differ from collectivist cultures (e.g.,
family reputation-driven stress) or low-resource regions (e.g., basic needs insecurity as a
primary stressor), requiring expanded sampling; additionally, the ordinal 'stress level' was
treated as continuous, which future work could refine with ordinal-specific models;
hyperparameter tuning was validated via 5%2 nested cross-validation to avoid overfitting, with
minimal inner-outer loop differences confirming the stability of selected parameters (e.g., GBM
learning rate = 0.08, RF mtry = 6). cross-cultural validity is further constrained by the dataset’s
Western focus, as norms for variables like "teacher-student relationship" (hierarchical vs.
egalitarian) and "extracurricular pressure" (individual achievement vs. community participation)
vary cross-nationally, limiting direct translation of intervention strategies; and physiological

data gaps, as the current dataset includes static physiological metrics (e.g., blood pressure
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categories) but lacks real-time data (e.g., wearable-derived heart rate variability), whose

integration could enhance GBM’s ability to capture acute stress responses.

Another consideration is the absence of 95% confidence intervals for key metrics (R?, MAE,
AR?). While confidence intervals provide valuable insight into statistical stability, the current
framework’s robustness is supported by multiple lines of evidence: nested 5x2 cross-validation
revealed minimal fluctuations between inner- and outer-loop performance (AR? < 0.02, AMAE
<0.01), confirming consistent model behavior across data splits; dual-model convergence (RF
and GBM) showed near-identical feature importance rankings (e.g., self-esteem as top predictor)
and performance metrics (AMSE = 0.004); and high overall predictive accuracy (R? > 0.80,
MAE < 0.15) with low variance across evaluation dimensions. These collectively indicate that
core findings are not driven by random noise, mitigating the need for explicit confidence

intervals to validate reliability.

Future research should address these gaps by validating the framework in diverse samples,
including ages 12-20 to capture developmental shifts in stressors, and cross-cultural cohorts
(e.g., East Asian, Sub-Saharan African) to test adaptability to regional stress norms; integrating
longitudinal data to track stress dynamics over semesters, enabling early warning of chronic
stress; and optimizing GBM’s hyperparameters for real-time physiological signals,
strengthening its utility in clinical settings. By addressing these directions, the framework can

evolve into a globally applicable tool for precision mental health in education.

5. Conclusions

5.1. Primary Contributions

This research advances three key innovations that directly address the core objectives of
decoding adolescent stressors through an interpretable dual-model framework: methodological
innovation, as the integrated dual-model framework (RF + GBM) achieves robust predictive
accuracy (R* > 0.80, MAE < 0.15), outperforming single-algorithm models by leveraging
complementary strengths—RF’s robustness to noisy data (MAE = 0.135) and GBM’s
sensitivity to linear relationships in physiological variables, resolving the critical limitation of
traditional single-model approaches that fail to simultaneously capture complex stressor
interactions and maintain stability across heterogeneous datasets; mechanistic insight, as
multidimensional analyses including SHAP value visualization quantitatively validate self-
esteem as a primary stress buffer (AR? = 0.12-0.13) and further reveal key nonlinear

mechanisms—such as threshold effects in academic performance and anxiety-mediated
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pathways between peer pressure and stress levels, deepening understanding of how
psychological, academic, and social factors interact to shape adolescent stress; and practical
optimization, as feature importance rankings from the ensemble models (e.g., prioritizing self-
esteem, academic performance, and peer-related factors) provide actionable guidance for
educational mental health interventions, with the lower impact of teacher-student relationships
(ranked 7th—8th) highlighting the need to refocus resources on peer interaction frameworks and

self-esteem cultivation.

5.2. Technical Validation

The dual-model framework demonstrates comprehensive reliability through rigorous
technical validation: cross-model consistency, with minimal performance variance between RF
and GBM (AMSE = 0.004) confirming the framework’s stability, while their complementary
strengths (RF’s noise resistance vs. GBM’s sensitivity to physiological linearity) enhance
adaptability across real-world educational scenarios—from heterogeneous student populations
to targeted high-risk cohort identification; clinical applicability, as the low MAE (0.135-0.146)
meets clinical-grade precision benchmarks, enabling reliable stratification of stress levels
(Low/Med/High) and supporting its integration into school-based mental health screening
systems; and interpretability integration, as the synergistic use of Spearman correlation matrices,
SHAP value visualizations, and feature importance rankings establishes a multi-dimensional
evidence chain that not only validates model decisions but also provides clear mechanistic
explanations (e.g., how self-esteem mitigates stress), enhancing trust among educators and

clinicians.

5.3 Implementation Pathway

To translate findings into practice, deployment should prioritize integrating the dual-model
framework into existing student mental health assessment systems within school health
infrastructures, using feature importance rankings to automate high-risk student identification
and recommend targeted interventions (e.g., self-esteem workshops for low-self-esteem
cohorts); developing real-time monitoring tools by integrating wearable device data (e.g., heart
rate variability, skin conductance) to enhance physiological stress tracking, addressing current
underrepresentation of dynamic physiological markers; and adapting to diverse contexts by
validating the framework in underrepresented groups (e.g., adolescents <15 years, extreme
socioeconomic strata) and cross-cultural settings to improve generalizability, as current

findings are limited to 15—18-year-olds.
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Future work should focus on longitudinal data integration to capture temporal dynamics of
stress (e.g., how academic stress fluctuates across semesters) and expanding the covariate
network to include family-level factors (e.g., parental stress transmission), which were not fully
addressed in the current dataset. By addressing these directions, the framework can evolve into

a versatile tool for precision mental health in education.

Abbreviations
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