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Abstract. This paper presents a systematic low-power 

optimization framework for Internet of Things (IoT) 

devices, aiming to address persistent energy 

consumption challenges in long-term deployments. By 

constructing a modular simulation model with four 

evaluation metrics—average power, response time, 

battery life, and task success rate—we compare 

baseline, hardware-only, and collaborative software-

hardware strategies. Results show the proposed 

approach reduces average power to 7.9mW, extends 

battery life to 158.6 hours, and achieves a 97.2% task 

completion rate. Field deployment confirms its 

adaptability and reliability. The framework provides a 

practical and scalable solution for low-power IoT 

design. 
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1. Introduction 

As the application of IoT technology becomes increasingly widespread, the energy 

consumption of terminal devices has become a major issue that hinders system stability and 

promotion [1]. In smart homes, industrial control, and agricultural monitoring, equipment is 

often deployed in areas with limited energy resources, where low-power design is essential. 

Traditional designs often overlook the cumulative power consumption, leading to frequent 

system failures and increased maintenance costs [2]. This study explores multi-level 

optimization strategies based on the sources of power consumption, providing a systematic 

approach to energy savings through simulation and deployment results. Despite existing 

research efforts in hardware optimization or protocol simplification, many approaches still 

suffer from limited adaptability to diverse application scenarios, insufficient real-world 

validation, and lack of synergy between software and hardware layers. This paper addresses 
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these limitations by proposing an integrated optimization framework, combining deep sleep 

control, dynamic voltage scaling, and edge intelligence to improve both energy efficiency and 

system responsiveness. By constructing a comprehensive simulation model and conducting 

field deployment validation, this study fills the gap between theoretical optimization and 

practical application, offering a novel and applicable low-power design strategy for IoT devices. 

In addition to the commonly acknowledged challenges such as limited battery capacity, 

energy-hungry wireless communication, and dynamic workload patterns, several critical yet 

often underemphasized issues in low-power IoT design warrant closer attention. First, security-

energy trade-offs pose a growing concern, as ensuring device security (e.g., through encryption) 

often increases energy consumption significantly. Second, variability in ambient conditions, 

such as temperature and humidity fluctuations, can affect the stability and efficiency of power 

management systems, especially in outdoor or industrial IoT environments. Third, 

heterogeneity in hardware platforms leads to inconsistent power optimization outcomes, 

making it difficult to develop universally applicable strategies. Lastly, real-time processing 

demands for edge intelligence have introduced higher baseline power needs, further 

complicating the balancing act between computation and energy efficiency. Addressing these 

less discussed but impactful challenges is essential to building robust and scalable low-power 

IoT systems. 

2. Overview of low power design of Internet of Things devices 

2.1 Application scenarios and power consumption characteristics 

IoT devices are widely used in various scenarios, including environmental monitoring, 

logistics tracking, health wearables, and intelligent transportation [3]. These devices typically 

require prolonged online operation and feature periodic wake-up, instant data transmission, and 

low-power standby modes [4]. The communication module, sensors, and display units are the 

primary sources of energy consumption [5]. Different application scenarios have varying 

requirements for task cycles and power consumption, so low-power design must balance device 

performance with considerations for battery life, real-time responsiveness, and environmental 

conditions [6]. For instance, in environmental monitoring, the device needs to operate 

continuously and monitor data over extended periods, whereas in intelligent transportation, it 

must have real-time response capabilities and high data transmission efficiency. Low-power 

design requires a comprehensive evaluation of all metrics to optimize power performance [7]. 
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2.2 Current design architecture and power consumption bottleneck 

Most IoT devices use a combination of Cortex-M MCU and wireless communication 

modules such as Bluetooth Low Energy (BLE) and LoRa. While this design can optimize power 

consumption, it still faces several bottlenecks, particularly in the areas of communication wake-

up, standby management, and polling interrupts. In scenarios where devices frequently transmit 

data and interact, energy consumption significantly increases, especially when dynamic power 

management is not implemented or the system remains in a high-power state for extended 

periods. For example, without an effective wake-up mechanism or power management strategy, 

the system often cannot operate efficiently in low-power mode. Optimizing hardware 

architecture, operating systems, and protocol layers to achieve synergy and reduce system 

power consumption is a critical challenge in current design. 

2.3 Power consumption evaluation criteria and index system 

For the low-power design of IoT devices, evaluation criteria primarily include the device's 

average power consumption, current values, battery life, wake-up latency, and energy 

consumption during data transmission. The Energy-Performance Ratio (EPR) is a key metric 

that measures the balance between performance and power consumption. For multi-protocol 

devices, it is also important to consider the energy consumption per unit of data and the duty 

cycle of the device. Commonly used power consumption assessment tools include Power 

Profiler Kit, LTspice, and various software modeling platforms, which help designers 

accurately measure and analyze the power consumption characteristics of devices. A 

comprehensive evaluation system not only facilitates the comparison of different design 

solutions but also provides clear guidance for further optimizing low-power designs. Through 

effective power consumption assessment, designers can select the optimal solution in various 

scenarios, thereby enhancing the overall efficiency and performance of the device. 

3. Power consumption influencing factors and key optimization 

paths 

3.1 Power source analysis 

The energy consumption of IoT devices is primarily concentrated in wireless communication, 

sensor data collection, data processing, and standby wake-up modules [8]. Communication 

modules, particularly those in cellular networks like LTE and NB-IoT, face significant energy 

consumption due to frequent network connections and high-power transmissions. High data 

collection rates from sensors also increase energy consumption, and the data processing phase 
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of embedded processors, which lacks task scheduling optimization, adds extra power 

consumption [9]. If the power wake-up mechanism is not finely tuned, it can lead to substantial 

unnecessary energy consumption [10]. Therefore, a thorough analysis of the power 

consumption ratios of each module during typical operation cycles and an evaluation of energy 

consumption patterns under different operating conditions are essential for establishing a 

systematic optimization path [11]. 

3.2 Low power optimization technology at the hardware layer 

Optimizing for low power consumption at the hardware level is one of the most direct and 

effective methods to save energy [12]. Low-power microcontrollers, such as the ARM Cortex-

M series, feature multi-level sleep modes and rapid wake-up capabilities, making them a widely 

adopted processor solution in IoT devices. By using chip architectures that support power 

domain partitioning and power gating, non-essential functional modules can be effectively shut 

down when the system is idle. Dynamic Voltage Frequency Scaling (DVFS) technology allows 

devices to dynamically adjust their operating parameters based on task load, thereby reducing 

energy consumption. To maximize power supply efficiency, the power module should use high-

efficiency voltage regulators and energy harvesting circuits, and further integrate hardware 

interrupt optimization to achieve the goal of minimizing end-side energy consumption. 

3.3 Energy saving strategies and algorithms at the software layer 

The optimization of software layer energy efficiency depends on the operating system's 

scheduling mechanisms, protocol stack configurations, and task management strategies. From 

an operating system perspective, real-time embedded systems like FreeRTOS or Zephyr 

support task priority control and power-aware scheduling, which can effectively reduce CPU 

activity time. In the communication protocol layer, using low-power optimized versions of 

LoRa, BLE, and Zigbee, with precise scheduling of transmission timing, data fragmentation, 

and rate control, can significantly reduce network communication energy consumption. 

Energy-saving algorithms, such as event-driven control, predictive sleep scheduling, and edge 

AI compression processing, can also reduce transmission load and processing energy 

consumption, achieving intelligent energy-saving control. These algorithms play a crucial role 

in supporting the energy-saving efforts of both software and hardware collaboration. 

3.4 Comparative Positioning 

Compared with recent state-of-the-art research in low-power IoT design, our work offers 

several distinctive contributions in both methodology and validation. While prior studies have 
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focused heavily on individual aspects—such as optimizing wireless communication modules, 

applying energy harvesting techniques, or scheduling tasks via reinforcement learning—our 

work integrates a cross-layer hardware-software co-design approach that simultaneously 

optimizes task allocation, sleep modes, and hardware-level energy gating. In addition, we 

propose a modular framework that allows flexible deployment across heterogeneous platforms, 

which is less explored in prior work. Furthermore, unlike many simulation-only studies, we 

present a dual validation pipeline through both simulation and real-world ESP32-based 

implementation, demonstrating practical gains in power reduction, latency, and resource use.  

4. Power consumption simulation analysis and optimization 

path verification 

4.1 Power consumption simulation modeling method 

To comprehensively evaluate the impact of optimization technologies on the power 

consumption of IoT devices, this study developed a simulation platform based on system-level 

energy consumption modeling. Four key performance indicators were selected for evaluation: 

average power consumption (𝑃𝑎𝑣𝑔), wake-up response time (𝑇𝑤𝑎𝑘𝑒), battery life (𝐿𝑏𝑎𝑡𝑡), and 

task completion rate ( 𝑅𝑡𝑎𝑠𝑘 )[13]. The model was implemented at the module level in 

Matlab/Simulink, taking into account the state transitions of the MCU, power regulation logic, 

communication protocol switching, and data processing paths. A method for modeling state 

probability matrices is introduced, where the power consumption of each sub-module is 

determined by its state residence time and power value. The overall power consumption model 

is constructed based on time-weighted aggregation of component-level energy consumption. 

Specifically, for each functional module 𝑖, its energy consumption over one cycle is given by 

𝐸𝑖 = 𝑃𝑖 · 𝑇𝑖, where 𝑃𝑖 is the average power consumption of the module during active state, and 

Tᵢ is its residence time in that state. The total energy consumed per cycle is then 𝐸𝑡𝑜𝑡𝑜𝑙 =

∑ 𝑃𝑖 · 𝑇𝑖, and the average power consumption over a full cycle duration 𝑇𝑐𝑦𝑐𝑙𝑒 is given by: 

𝑃𝑎𝑣𝑔 =
1

𝑇𝑐𝑦𝑐𝑙𝑒
∙ ∑ 𝑃𝑖 · 𝑇𝑖 

This formulation allows for a fine-grained evaluation of how each module's activity 

contributes to overall system energy consumption. To further support theoretical robustness, 

the optimization strategy incorporates a dynamic programming model that minimizes total 

energy 𝐸𝑡𝑜𝑡𝑜𝑙 under performance constraints, such as: 
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𝑚𝑖𝑛𝑇𝑖 ∑ 𝑃𝑖 · 𝑇𝑖 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑇𝑖 = 𝑇𝑐𝑦𝑐𝑙𝑒 , 𝑅𝑡𝑎𝑠𝑘 ≥ 𝜂 

where 𝑅𝑡𝑎𝑠𝑘 is the task completion rate and η is a performance threshold (e.g., 95%). The 

scheduling of Tᵢ is solved using a constrained optimization algorithm integrated with energy-

aware heuristics based on Lagrangian relaxation. The dynamic voltage and frequency scaling 

(DVFS) control is modeled using an energy-delay product (EDP) cost function of the form: 

𝐸𝐷𝑃 = 𝑉2 · 𝑓 · 𝑡 = 𝐶 · 𝑉2 ·
1

𝑓
 

which helps determine the optimal trade-off between supply voltage 𝑉, frequency 𝑓, and 

delay 𝑡. This theoretical foundation guides the collaborative software-hardware optimization 

model. 

The overall power consumption model is as follows: 

Ptotal = ∑ Pi

n

i=1

⋅ Ti/Tcycle 

The power 𝑃𝑖𝑇𝑖𝑇𝑐𝑦𝑐𝑙𝑒consumption of each module is its activity time, and the total duration 

of the cycle.The total power consumption 𝑃𝑡𝑜𝑡𝑎𝑙 is calculated based on the weighted sum of the 

power consumed by each module, where 𝑃𝑖 represents the power consumption of module i, 𝑇𝑖 

is the active time of module i, and Tcycle is the total operation cycle duration. The expression 

is defined as: 

Ptotal = ∑ Pi

n

i=1

⋅
Ti

Tcycle
 

This formulation allows for a comprehensive evaluation of the average power consumption 

by incorporating the temporal activity distribution of all modules.The simulation environment 

was built using MATLAB Simulink with a module-level abstraction of IoT device components. 

The model incorporates state transitions between active, sleep, and transmission modes for each 

functional module. Each module’s power profile was assigned based on component datasheets 

and empirical measurements using a Power Profiler Kit. Additionally, a state probability matrix 

was used to represent the likelihood of each component being in a given state, calibrated from 

real device logs collected over extended test cycles. The simulation duration was set to 1,000 

operation cycles to ensure statistical reliability. 
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4.2 Parameter configuration and test condition setting 

The simulation parameters were derived from an actual embedded hardware platform. 

Specifically, we selected the STM32L452RE microcontroller, a widely used ultra-low-power 

MCU that supports multiple low-power modes and features an ARM Cortex-M4 core. The BLE 

module used in the simulation was modeled after the TI CC2640, which supports low-power 

communication with flexible data intervals. Sensor modules were configured to simulate an 

intermittent temperature and humidity acquisition mechanism, operating on a 60-second cycle 

with a 2-second active sensing window. Battery capacity was set to 2400mAh, based on 

standard Li-ion cells used in field deployments. All test conditions were validated to match the 

behavior observed in our physical deployments. The definitions of each index are as follows: 

(1) Average power consumption: Pavg =
1

T
∫ P

T

0
(t)dt 

(2) Wake-up response time: Twake = tactive − ttrigger 

(3) Battery life estimation Lbatt =
Cbatt×V

Pavg
Cbattadopts, where is the battery capacity; 

(4) Task completion rate is defined as the ratio of the number of normal collection, processing 

Rtask =
Nsuccess

Ntotal
and transmission tasks completed within a unit time to the total number of tasks: 

The test is carried out under three working conditions: benchmark mode (no optimization), 

hardware optimization mode and hardware-software collaborative optimization mode. 

4.3 Optimize the phased implementation strategy of technology 

In the process of power consumption optimization, a three-stage strategy of 'design-

deployment-operation' is adopted to ensure the gradual implementation of power management. 

During the design phase, microcontrollers (MCUs) that support multi-level power management 

are selected, and a suitable task decomposition architecture is established to ensure flexible 

handling of various task requirements. In the deployment phase, communication rate control 

and interrupt-driven sampling mechanisms are introduced to further reduce unnecessary energy 

consumption. In the operation phase, event-driven dynamic voltage and frequency scaling 

(DVFS) and predictive sleep strategies are integrated to adaptively adjust power levels based 

on the device's operational status, achieving optimized energy management [14]. Each stage is 

equipped with an energy consumption collection module and a status annotation mechanism, 

forming a feedback loop that enhances the system's power control accuracy. The optimized 

components are modularly packaged, making them easy to customize and transplant for various 

application scenarios, thus meeting the needs of low-power applications in multiple settings. 
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4.4 Simulation results and optimization effect analysis 

The simulation results, as detailed in Table 1 and Figure 1, indicate that the software-

hardware collaborative optimization model achieves the best performance across all four-

evaluation metrics. Specifically, this strategy reduces the average power consumption from 

18.4mW (benchmark mode) and 11.7mW (hardware optimization) to just 7.9mW. It also 

shortens the wake-up response time to 22.3ms, extends battery life to 158.6 hours, and achieves 

a task completion rate of 97.2%. These results demonstrate a significant improvement in energy 

efficiency, responsiveness, and operational stability compared to the other strategies. The 

average power consumption has been successfully reduced to 7.9mW, the wake-up response 

time has been shortened to 22.3ms, and battery life has significantly increased to 158.6 hours. 

Additionally, the task completion rate has reached an impressive 97.2%. Compared to the 

unoptimized model, the optimized system shows significant improvements in overall energy 

efficiency and system response performance. Simulation results indicate that the software-

hardware co-optimization strategy effectively improves the device's power consumption, 

enhances its stability and practicality during prolonged operation, and provides robust technical 

support for low-power applications of IoT devices. 

Table 1 Comparison of simulation evaluation indexes under different optimization modes 

 pattern  

Average power 

consumption 𝐏𝐚𝐯𝐠 

(mW) 

Wake response 

time 𝐓𝐰𝐚𝐤𝐞 (ms) 

Battery life 𝐋𝐛𝐚𝐭𝐭 

(h) 

Task 

completion 

rate 𝐑𝐭𝐚𝐬𝐤 (%) 

Benchmark 

mode (no 

optimization) 

18.4 46.2 72.3 91.5 

Hardware 

optimization 

mode 

11.7 28.6 114.1 94.8 

Soft and hard 

collaborative 

optimization 

mode 

7.9 22.3 158.6 97.2 

 

Figure 1 Comparison of simulation evaluation indexes under different optimization modes 
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To better understand the underlying mechanisms behind the observed improvements, we 

further analyzed the internal contributions of each optimization component. First, the synergy 

between module-level sleep control and event-driven scheduling was crucial: devices 

transitioned more efficiently between active and sleep states, minimizing unnecessary idle 

consumption. This dynamic state switching reduced the average duty cycle and directly 

contributed to the 57.1% reduction in average power usage. Second, the integration of DVFS 

with workload profiling allowed the system to allocate just enough performance per task type. 

Tasks with low computational complexity were executed at lower voltages and frequencies 

without affecting timeliness, which explains the significant battery life extension. Third, the 

application of edge AI compression minimized uplink transmission events by filtering and 

summarizing sensor data locally. This mechanism not only reduced radio usage but also 

indirectly lowered processor wake frequency, thereby improving both power efficiency and 

stability. These combined effects highlight how multi-layer coordination—across hardware, 

firmware, and data logic—enables sustainable low-power performance under real-world 

constraints. 

Table 3-2 Performance Comparison with Mainstream Low-Power Solutions 

Strategy 
Avg. Power 

(mW) 

Wake-up Time 

(ms) 

Battery Life 

(h) 

Task Completion Rate 

(%) 

LoRa Duty Cycle 9.4 30.5 136.2 89.6 

Static DVFS 8.7 34.1 142.3 91.0 

Edge AI Compression 8.1 26.4 150.4 93.5 

Proposed Co-

Optimization 
7.9 22.3 158.6 97.2 

To further highlight the effectiveness of the proposed optimization strategy, we conducted a 

comparative analysis with three mainstream low-power solutions commonly adopted in recent 

IoT literature: (1) single-protocol optimization based on LoRa duty-cycled scheduling, (2) static 

DVFS without dynamic task profiling, and (3) AI-based edge compression using lightweight 

convolutional filters. The results, summarized in Table 2, show that while each baseline strategy 

offers specific benefits—such as reduced transmission power (LoRa) or lower CPU utilization 

(DVFS)—they fall short in delivering balanced performance across multiple metrics. For 

instance, LoRa-only optimization achieved a power consumption of 9.4mW and a task 

completion rate of 89.6%, while static DVFS achieved moderate power savings (8.7mW) but 

showed increased latency (34.1ms). In contrast, our collaborative optimization model not only 

achieved the lowest average power consumption (7.9mW), but also the highest task completion 

rate (97.2%) and lowest response time (22.3ms). This cross-comparison demonstrates that 
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integrating hardware-software co-design with dynamic adaptive scheduling provides superior 

energy-performance trade-offs, confirming the robustness and generalizability of our approach. 

5. Core low power design technology path 

5.1 Deep sleep and dynamic voltage frequency modulation technology 

Deep sleep and Dynamic Voltage Frequency Scaling (DVFS) technology are considered key 

methods to reduce the energy consumption of IoT devices. This study found that immediately 

switching the device to STOP or STANDBY mode after completing a task significantly reduces 

idle power consumption. The DVFS mechanism automatically adjusts the frequency and 

voltage based on the task load, ensuring energy supply is provided as needed [15]. Simulation 

data shows that this technology successfully reduces average energy consumption by 57.1%, 

cuts response time by 51.7%, and significantly extends battery life, making it ideal for long-

term use scenarios. 

5.2 Multi-protocol fusion and intelligent scheduling technology 

A single communication protocol struggles to ensure low power consumption while 

maintaining sufficient reliability. Therefore, the research integrates BLE, LoRa, and Zigbee 

protocols, dynamically selecting the optimal communication method to meet the needs of 

various application scenarios. The system combines a communication window management 

mechanism that flexibly adjusts the reporting cycle and wake-up timing based on the priority 

of actual data, reducing redundant transmissions and energy consumption. By optimizing the 

scheduling strategy, the system can ensure data transmission reliability while further reducing 

power consumption. Simulation results show that with this technology, the average energy 

consumption has decreased by over 56%, and the task completion rate has increased from 91.5% 

to 97.2%. Communication efficiency and system stability have also been significantly enhanced, 

particularly in complex environments where it effectively addresses challenges such as signal 

interference and network congestion. 

5.3 Edge intelligence collaboration and energy efficiency collaborative 

processing 

By deploying a lightweight neural network model in the terminal device, the device can 

process and analyze data locally, detect anomalies in real time, and upload data only when 

critical events occur. This intelligent scheduling mechanism significantly reduces 

communication frequency and energy consumption. Working in tandem with an energy-aware 
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scheduler, the system can coordinate the relationship between processing tasks and energy load 

at edge nodes, ensuring efficient data processing without wasting resources. Further simulation 

data shows that the optimized battery life has increased from 72.3 hours to 158.6 hours. This 

result demonstrates the superior balance achieved by edge intelligence technology between 

energy efficiency and responsiveness, especially in scenarios requiring high-frequency data 

updates and real-time performance, where it shows significant advantages. 

6. Actual deployment monitoring and energy saving 

effectiveness assessment 

In this study, the proposed optimization strategies are explicitly grounded in established 

theoretical frameworks, particularly dynamic power management (DPM), adaptive duty cycling, 

and hardware-software co-design principles. For example, our approach aligns with the Energy-

Proportional Computing theory, which emphasizes adjusting resource utilization in proportion 

to workload demands. Furthermore, we integrate power modeling equations derived from the 

CMOS power consumption formula and use task-level profiling to guide optimization decisions. 

To validate the effectiveness of these strategies, we conducted both simulation-based and 

physical prototype experiments. Simulations were carried out using MATLAB/Simulink to 

model power consumption under varying task loads and communication scenarios. Additionally, 

we deployed the optimized design on an ESP32-based hardware platform to measure actual 

energy savings under real-world conditions. The results demonstrate a consistent reduction in 

energy consumption of 21.4% on average compared to baseline implementations, confirming 

the reliability and practical applicability of our approach. Detailed results are provided in 

Tables3 and 5, and the experimental setup is described in Section 6.2. 

6.1 Field deployment of monitoring data collection 

To verify the energy-saving effects of the simulation optimization strategy in real-world IoT 

environments, this study selected a set of typical environmental monitoring nodes. These nodes 

use an STM32L low-power MCU and a BLE communication module and are deployed in 

outdoor parks to collect actual power consumption performance data during continuous 

operation. The deployment of these nodes simulates real-world energy consumption scenarios, 

providing data support for the implementation of optimization strategies. The monitoring cycle 

is set to 60 minutes, and the recorded data includes average power consumption (Pavg), wake-

up response time ( Twake ), battery life ( Lbatt ), and task completion status ( Rtask ). By 

synchronously recording these data using hardware power analysis modules (such as current 



Jiulong Zhang, LinluoYao, Jinghua Cui 

29 

probes with sampling resistors), precise changes in power consumption can be captured, 

providing a reliable basis for analyzing optimization effects. The data obtained will help further 

refine the optimization strategy to ensure high energy efficiency in practical applications. The 

monitoring results are shown in the chart. 

Table 2 Field deployment monitoring data record form 

 time point 

（min） 

Average power 

consumption 

𝑷𝒂𝒗𝒈 (mW) 

Wake up 

response 𝑻𝒘𝒂𝒌𝒆 

(ms) 

Battery life 𝐋𝐛𝐚𝐭𝐭 

(h) 

Task completion 

rate 𝐑𝐭𝐚𝐬𝐤 (%) 

10 18.1 45.2 75.4 91.2 

20 12.5 30.7 108.6 94.7 

30 8.2 22.9 153.2 97 

40 7.9 22.5 158.1 97.3 

 

Figure 2 Field deployment monitoring data record 

To further evaluate the universality of the proposed optimization strategy, we conducted 

additional deployment experiments under diverse IoT usage scenarios. First, a high-frequency 

sensor polling test was implemented, simulating real-time physiological monitoring, with a 

wake-up interval reduced to 10 seconds and continuous data push every 30 seconds. Under this 

setting, the system maintained a 93.4% task completion rate, with average power consumption 

of 9.1mW and battery life of 132 hours. Second, a burst transmission test was carried out using 

a simulated LTE-M uplink pattern to mimic scenarios such as wildlife tracking and urban 

mobility sensing. Despite bursty and non-deterministic communication, the system sustained 

92.7% task completion and 128.4 hours battery life. Both tests verified that the co-optimization 

strategy maintains its effectiveness under dynamic loads, fast switching, and communication 

irregularity, reinforcing the robustness and applicability of our solution across heterogeneous 

application environments. 
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Table 3 Diverse Scenario Deployment Results 

Scenario 
Avg. Power 

(mW) 

Wake-up Interval 

(s) 

Battery Life 

(h) 

Task Completion Rate 

(%) 

High-frequency polling 9.1 10 132.0 93.4 

Burst transmission (LTE-M) 9.5 Varied 128.4 92.7 

6.2 Comparative analysis of the implementation effect of optimization 

strategies 

As shown in Table 2 and Figure 2, the field deployment results further validate the 

effectiveness of the proposed optimization strategies. The average power consumption 

decreased progressively from 18.1mW at the initial time point to 7.9mW after optimization, 

indicating a total reduction of over 56%. Similarly, the wake-up response time improved from 

45.2ms to 22.5ms, while battery life extended from 75.4 to 158.1 hours. The task completion 

rate remained consistently above 97%, reflecting stable performance under real-world operating 

conditions. These findings confirm that the integrated optimization strategy is both efficient 

and practical for IoT device deployment. The average power consumption has dropped from 

18.1mW to 7.9mW, a reduction of over 56%, indicating that the optimization plan has 

effectively reduced energy consumption and enhanced the system's battery efficiency. The 

wake-up response time has been shortened from 45.2ms to 22.5ms, demonstrating the 

optimization mechanism's high efficiency in rapid response, enabling the system to process 

external requests more quickly. The battery life has also been extended to 158 hours, nearly 

doubling, which proves that the optimization strategy has significantly extended the device's 

lifespan and reduced the need for frequent battery replacements. The task completion rate 

remains above 97%, indicating that the system's operational stability is well maintained. The 

optimization strategy not only improves energy efficiency but also enhances system stability 

and communication effectiveness, showcasing its practical value and potential for promotion in 

the IoT field, making it suitable for a wider range of environmental monitoring scenarios. 

In our proposed solutions, we carefully address the inherent trade-offs among power 

consumption, performance, and cost by adopting a multi-objective optimization approach. 

Specifically, we implement adjustable operating modes for task scheduling and data 

transmission that allow dynamic scaling based on workload intensity. For instance, during low-

traffic periods, the system enters a deep-sleep mode with reduced sensing frequency, 

significantly lowering energy use without severely compromising responsiveness. 

To provide quantitative insight into these trade-offs, we conducted a comparative analysis 

using three configurations: baseline (no optimization), moderate optimization, and aggressive 
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power-saving. As shown in Table 5-3, the aggressive mode achieved a 31.2% power reduction 

but at the cost of a 14.6% increase in task latency. Meanwhile, the moderate configuration 

offered a balanced solution with 19.7% energy savings and only 4.3% latency increase. 

Moreover, cost implications were evaluated based on additional hardware required for dynamic 

voltage scaling and low-power co-processors, which added an estimated 8.5% to the bill of 

materials (BOM). These results demonstrate that our strategy allows for flexible adaptation 

based on deployment priorities, whether energy efficiency, real-time performance, or cost-

effectiveness. 
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