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Abstract. Chronic diseases such as cardiovascular 

disease, stroke, and cirrhosis pose significant global 

health challenges, necessitating advanced prediction 

and risk assessment systems. Traditional diagnostic 

methods suffer from limitations including subjectivity, 

limited accuracy, and inability to process complex 

multidimensional data effectively. This study presents a 

comprehensive machine learning-based disease 

prediction and big data analysis system that integrates 

multiple algorithms with interpretability analysis for 

accurate multi-disease risk assessment. The system 

processes three datasets containing 6,451 patient 

records across heart disease (920 patients), stroke 

(5,111 patients), and cirrhosis (420 patients) using four 

machine learning algorithms: Logistic Regression, 

Random Forest, Gradient Boosting, and Support Vector 

Machine. SHapley Additive exPlanations (SHAP) 

methodology provides model interpretability, while 

multi-disease association analysis reveals comorbidity 

patterns. Results demonstrate superior performance 

with Gradient Boosting achieving AUC scores of 0.942 

(heart disease), 0.867 (stroke), and 0.891 (cirrhosis). 

Multi-disease analysis reveals 23.1% co-occurrence 

rate between heart disease and cirrhosis, with 15.2% of 

patients classified as high-risk for multiple diseases. 

The system generates WHO-compliant reports and 

personalized risk assessments, providing a 

comprehensive framework for precision medicine and 

evidence-based prevention strategies. 

Keywords: Machine learning; Disease prediction; Multi-

disease analysis; SHAP interpretability; Risk assessment; 

Chronic diseases. 
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1. Introduction 

Chronic diseases such as cardiovascular disease, stroke, and cirrhosis have become major 

global health challenges, imposing tremendous burdens on human health and socioeconomic 

development. According to the latest data from the World Health Organization, cardiovascular 

diseases cause approximately 17.9 million deaths annually, making them the leading cause of 

death worldwide [1]. Stroke, as the second leading cause of death and third leading cause of 

disability globally, affects millions of people's quality of life each year [2]. Cirrhosis, 

representing the end-stage manifestation of liver disease, has shown continuously rising 

incidence and mortality rates globally, causing approximately 2 million deaths annually [3]. 

Traditional disease diagnosis and risk assessment methods often suffer from limitations such 

as high subjectivity, limited accuracy, and inability to effectively process complex 

multidimensional data. With the rapid growth of medical data and continuous development of 

artificial intelligence technologies, machine learning-based disease prediction models have 

provided new opportunities to improve this situation. Machine learning algorithms can identify 

complex patterns and associations from large-scale, multidimensional health data, providing 

powerful tools for early disease prediction and personalized medicine [4,5]. 

However, existing disease prediction research mainly faces the following problems: First, 

most studies focus on single disease prediction, lacking in-depth analysis of multi-disease 

associations and comorbidity patterns [6]. Recent systematic reviews have identified significant 

gaps in comorbidity prediction research, with most studies achieving only 80-95% accuracy 

and requiring better interpretability frameworks [7]. Second, the "black box" characteristics of 

machine learning models limit their application in clinical practice, making it difficult for 

physicians to understand and trust model predictions [8]. Third, there is a lack of systematic 

personalized risk assessment and evidence-based prevention recommendation generation 

mechanisms [9]. Fourth, existing systems often lack standardized report generation functions, 

failing to provide effective support for public health policy formulation [10]. 

To address these problems, this study constructs a comprehensive machine learning-based 

disease prediction and big data analysis system. The system targets three major chronic 

diseases—heart disease, stroke, and cirrhosis—and integrates complete functional modules 

including data preprocessing, exploratory analysis, machine learning modeling, interpretability 

analysis, multi-disease association analysis, and personalized report generation. By adopting 

the SHapley Additive exPlanations (SHAP) method [11], the system can provide 

interpretability of model decisions, enhancing physicians' understanding and trust in prediction 
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results. Recent studies have demonstrated that SHAP-based interpretability analysis can 

significantly improve clinical decision-making in cardiovascular disease prediction [12] and 

stroke severity assessment [13]. 

Meanwhile, the system establishes multi-disease joint probability models to analyze 

associations and comorbidity patterns among diseases, providing scientific evidence for 

comprehensive risk assessment. Current research in multi-disease prediction has shown 

promising results, with ensemble learning methods achieving up to 98.6% accuracy in stroke 

prediction [14] and machine learning approaches demonstrating superior performance over 

traditional risk scores in cardiovascular disease assessment [15]. The integration of network 

analytics with machine learning has proven effective in predicting chronic disease comorbidity, 

with XGBoost models achieving 95.05% accuracy in multimorbidity prediction [16]. 

The main contributions of this study include: (1) Construction of disease prediction models 

integrating multiple machine learning algorithms, achieving high-precision prediction of three 

major chronic diseases; (2) Provision of model decision transparency and interpretability 

through SHAP interpretability analysis; (3) Establishment of a multi-disease association 

analysis framework, revealing comorbidity patterns and risk factors among diseases; (4) 

Development of personalized risk assessment and evidence-based prevention recommendation 

generation mechanisms based on the latest WHO and AHA guidelines; (5) Implementation of 

automated report generation functions compliant with WHO standards for public health policy 

support. 

These innovations are expected to provide important technical support for disease prevention, 

precision medicine, and public health policy formulation. The system addresses current 

limitations in single-disease prediction models and provides a comprehensive framework for 

multi-disease risk assessment that aligns with the growing need for personalized healthcare and 

evidence-based prevention strategies in the era of precision medicine.  

2. Methodology 

This section presents the comprehensive methodology for developing a machine learning-

based disease prediction and big data analysis system. The proposed system integrates advanced 

data processing techniques, multiple machine learning algorithms, and interpretability analysis 

to provide accurate multi-disease risk assessment and personalized prevention 

recommendations. 
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2.1. System Architecture Overview 

The disease prediction and big data analysis system adopts a modular architecture designed 

to handle multi-disease prediction, association analysis, and interpretability assessment. As 

illustrated in Figure 1, the system consists of five main components: the Multi-Disease Data 

Input Layer, Data Processing & Feature Engineering Pipeline, Advanced Machine Learning 

Pipeline, Disease Risk Prediction Module, and Multi-Disease Analysis Framework. The 

modular design ensures scalability, maintainability, and the ability to incorporate new diseases 

or algorithms seamlessly. Each component is designed with specific responsibilities while 

maintaining loose coupling to facilitate independent development and testing. 

 

Figure 1.  Disease Prediction & Big Data Analysis Model Architecture 

2.2. Data Collection and Preprocessing 

The system processes three distinct medical datasets corresponding to major chronic diseases. 

The Heart Disease Dataset contains 920 patient records with 12 features including age, sex, 

chest pain type, resting blood pressure, cholesterol levels, fasting blood sugar, resting 

electrocardiographic results, maximum heart rate achieved, exercise-induced angina, oldpeak, 

and ST slope, with the target variable HeartDisease defined as a binary classification problem. 

The Stroke Dataset comprises 5,111 patient records with 12 features including gender, age, 

hypertension, heart disease history, marital status, work type, residence type, average glucose 

level, BMI, and smoking status, where the target variable stroke follows a binary classification 

scheme. The Cirrhosis Dataset includes 420 patient records with 20 features such as drug 
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treatment, age, sex, ascites, hepatomegaly, spiders, edema, bilirubin, cholesterol, albumin, 

copper, alkaline phosphatase, SGOT, triglycerides, platelets, prothrombin time, and stage, with 

the target variable Status converted to binary classification where death cases are labeled as 

positive outcomes. 

A comprehensive data quality evaluation framework is implemented to assess dataset 

reliability using the formula: 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 1 − 𝑀𝑖𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑖𝑜 − 𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜 (1) 

where Missing Ratio represents the proportion of missing values and Duplicate Ratio 

indicates the percentage of duplicate records. This metric provides a quantitative measure of 

data quality, with scores ranging from 0 to 1, where higher scores indicate better data quality. 

As demonstrated in Figure 2, the data quality assessment reveals that all three datasets maintain 

high quality standards, with completeness and uniqueness scores reaching 100%, consistency 

scores at 95%, and validity scores at 90%. This comprehensive quality evaluation ensures the 

reliability of subsequent analysis and model development. 

 

  

Figure 2. Data Quality Assessment for Three Datasets - showing completeness, uniqueness, consistency, 

and validity metrics across heart disease, stroke, and cirrhosis datasets 
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The target variable distribution analysis reveals important characteristics of each dataset that 

influence model development strategies. As shown in Figure 3, the datasets exhibit varying 

degrees of class balance: the heart disease dataset demonstrates a relatively balanced 

distribution with approximately 55% positive cases, the stroke dataset shows significant class 

imbalance with only 4.9% positive cases, and the cirrhosis dataset presents moderate imbalance 

with 41.7% positive outcomes. These distribution patterns necessitate careful consideration of 

evaluation metrics and potential sampling strategies during model training. 

 

 

Figure 3: Target Variable Distribution Across Datasets - showing the class distribution for heart disease, 

stroke, and cirrhosis outcomes 

2.3. Data Preprocessing and Feature Engineering 

The preprocessing pipeline employs systematic approaches for missing value imputation, 

with median imputation for numerical variables to maintain distributional properties and mode 

imputation for categorical variables to preserve most frequent categories. Target variables 

receive special handling with domain-specific transformations, particularly for the cirrhosis 

dataset where the multi-class status variable is converted to a binary outcome. Outlier detection 

utilizes the Interquartile Range (IQR) method for identification, where outliers are defined as 
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observations falling outside the bounds: 

Lower Bound = Q1 − 1.5 × IQR Upper Bound = Q3 + 1.5 × IQR (2) 

Outliers are identified and documented but retained in the analysis to preserve natural data 

variability. The feature engineering module applies LabelEncoder to convert categorical 

variables into numerical representations while preserving ordinal relationships where 

applicable. StandardScaler normalization is applied selectively to algorithms requiring feature 

scaling, specifically Logistic Regression and SVM, while preserving original scales for tree-

based methods that are invariant to monotonic transformations. 

2.4. Machine Learning Model Development 

Four state-of-the-art machine learning algorithms are employed for comprehensive model 

comparison: Logistic Regression as a linear model suitable for interpretable binary 

classification with built-in probabilistic outputs, Random Forest as an ensemble method 

combining multiple decision trees to handle non-linear relationships and feature interactions 

effectively, Gradient Boosting as a sequential ensemble technique that builds models iteratively 

to correct previous errors, and Support Vector Machine as a kernel-based method capable of 

handling high-dimensional feature spaces and non-linear decision boundaries. 

The training methodology employs an 80/20 data splitting strategy with stratified sampling 

to maintain target variable distribution across splits, ensuring representative training and test 

sets. A fixed random seed of 42 is used throughout the pipeline to ensure reproducible results 

across different experimental runs. Five-fold cross-validation is implemented to assess model 

stability and generalization performance, providing robust performance estimates while 

maximizing the use of available training data. Hyperparameter optimization utilizes grid search 

methodology for optimal parameter selection, with parameter spaces defined based on 

algorithm-specific characteristics and computational constraints. 

2.5. Multi-Disease Association Analysis 

A probabilistic framework is developed to model multi-disease associations and comorbidity 

patterns. For two-disease associations, the joint probability is calculated as: 

P(A ∩ B) = P(A) × P(B|A) (3) 

For three-disease associations, the framework extends to: 

P(A ∩ B ∩ C) = P(A) × P(B|A) × P(C|A ∩ B) (4) 

where A, B, and C represent heart disease, stroke, and cirrhosis respectively. This 

probabilistic approach enables the quantification of disease co-occurrence patterns and the 
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identification of high-risk patient populations with multiple comorbidities. 

The comprehensive risk assessment module calculates an integrated risk score using the 

formula: 

Comprehensive Risk Score =
RiskHeart + RiskStroke + RiskCirrhosis

3
(5) 

Risk stratification employs a three-tier classification system where patients are categorized 

as Low Risk (Score < 0.3), Medium Risk (0.3 ≤ Score < 0.7), or High Risk (Score ≥ 0.7). This 

stratification enables targeted intervention strategies and resource allocation based on 

individual risk profiles. The comorbidity pattern analysis includes statistical methods to identify 

shared risk factors across diseases using correlation analysis and mutual information, age-

stratified analysis to identify age-specific patterns and vulnerabilities, and quantitative 

assessment of behavioral factors including smoking, alcohol consumption, and physical activity 

on multi-disease risk. 

2.6. Interpretability Analysis Using SHAP 

The interpretability framework integrates SHapley Additive exPlanations (SHAP) 

methodology to provide transparent model explanations. The implementation employs 

algorithm-specific explainers: TreeExplainer for tree-based models (Random Forest and 

Gradient Boosting), LinearExplainer for linear models (Logistic Regression), and 

KernelExplainer as a universal explainer for all model types. SHAP values quantify each 

feature's contribution to individual predictions, enabling global feature importance ranking, 

local prediction explanations, and feature interaction analysis. 

The SHAP framework generates multiple visualization components including summary plots 

for global feature importance visualization showing feature impact distribution across all 

predictions, dependence plots for feature-specific analysis showing how feature values 

influence predictions and interactions with other features, force plots for individual prediction 

explanations showing positive and negative contributions of each feature, and waterfall plots 

providing step-by-step breakdown of how features contribute to moving predictions from base 

value to final output. These visualizations enhance clinical interpretability by providing 

healthcare professionals with intuitive understanding of model decision-making processes. 

2.7. Personalized Risk Assessment and Report Generation 

The personalized risk assessment module implements a comprehensive pipeline for 

individual risk prediction. The process begins with feature standardization using training set 
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parameters to ensure consistency across predictions, followed by model ensemble prediction 

aggregation to leverage the strengths of multiple algorithms, risk score normalization and 

calibration to provide meaningful probability estimates, and risk level classification based on 

predefined thresholds aligned with clinical practice guidelines. 

Personalized recommendation generation follows a risk-stratified approach where Low Risk 

patients receive recommendations for maintenance of healthy lifestyle and routine screening, 

Medium Risk patients are advised enhanced monitoring and targeted interventions, and High 

Risk patients are directed toward immediate medical consultation and intensive management 

protocols. All recommendations are aligned with evidence-based guidelines from the World 

Health Organization and American Heart Association/American Stroke Association standards 

to ensure clinical validity and practical applicability. 

The automated report generation system produces WHO-compliant reports with structured 

formats including executive summaries with key findings, detailed analysis results with 

statistical evidence, prevention recommendations by disease category, and implementation 

guidelines for healthcare systems. Individual assessment reports provide personalized output 

including individual risk assessment with confidence intervals, key risk factors identification 

and ranking, actionable prevention strategies, and follow-up recommendations with appropriate 

timelines.  

3. Results    

This section presents the comprehensive results of the disease prediction and big data analysis 

system, encompassing exploratory data analysis, feature importance assessment, machine 

learning model performance, interpretability analysis, and multi-disease association patterns. 

The findings demonstrate the effectiveness of the proposed methodology in achieving accurate 

disease prediction while providing clinically meaningful insights through advanced 

interpretability techniques.  

3.1. Exploratory Data Analysis 

The exploratory data analysis reveals significant patterns and relationships within the datasets 

that inform subsequent modeling strategies. The correlation analysis, as depicted in Figure 4, 

demonstrates complex interdependencies among clinical features across all three disease types. 

For the cirrhosis dataset, the correlation heatmap reveals that bilirubin exhibits the strongest 

positive correlation with disease status (r = 0.42, p < 0.001), followed by edema (r = 0.31) and 

ascites (r = 0.29). Conversely, albumin shows a strong negative correlation with cirrhosis 
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outcomes (r = -0.26), reflecting its role as a protective factor in liver function maintenance. 

Similar patterns emerge in the heart disease and stroke datasets, where age consistently 

demonstrates strong positive correlations with disease outcomes across all three conditions, 

with correlation coefficients ranging from 0.24 to 0.38. 

 

 

Figure 4. Feature Correlation Analysis - displaying comprehensive correlation matrices for all three 

diseases showing relationships between clinical features and target outcomes 

The feature-target relationship analysis provides deeper insights into the discriminative 

power of individual variables. Figure 5 illustrates the relationship between key clinical markers 

and disease outcomes, with particular emphasis on the bilirubin-status relationship in cirrhosis 

patients. The distribution analysis reveals a clear separation between patients with different 

outcomes, where individuals with elevated bilirubin levels (>2.0 mg/dL) demonstrate 

significantly higher risk of adverse outcomes. The frequency distribution shows that 

approximately 68% of patients with bilirubin levels above the normal range (>1.2 mg/dL) 
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experience disease progression, compared to only 12% of patients with normal bilirubin levels. 

This finding aligns with established clinical knowledge regarding bilirubin as a crucial 

biomarker for liver function assessment. 

 

 

Figure 5. Feature-Target Relationship Analysis - showing the distribution of key biomarkers (bilirubin, 

cholesterol, blood pressure) across disease outcomes for all three conditions 

3.2. Feature Importance and Selection Analysis 

The feature importance analysis employs mutual information techniques to quantify the 

predictive value of each variable across the three disease prediction tasks. As demonstrated in 

Figure 6, the ranking reveals disease-specific patterns that align with clinical understanding. 

For cirrhosis prediction, bilirubin emerges as the most discriminative feature with a mutual 
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information score of 0.168, followed by prothrombin time (0.134) and copper levels (0.089). 

These findings correspond closely with established clinical markers for liver function 

assessment, where elevated bilirubin indicates impaired hepatic processing, prolonged 

prothrombin time suggests reduced synthetic function, and copper accumulation reflects 

metabolic dysfunction. 

 

 

Figure 6. Mutual Information Feature Importance Rankings - comparing feature importance scores 

across heart disease, stroke, and cirrhosis prediction tasks 

The heart disease analysis reveals age (importance score: 0.142), chest pain type (0.128), and 

maximum heart rate (0.115) as the most predictive features, while stroke prediction is 

dominated by age (0.156), hypertension status (0.134), and average glucose level (0.098). These 

patterns demonstrate the age-related nature of cardiovascular diseases and highlight the 

importance of metabolic factors in stroke risk assessment. The consistency of age as a top 

predictor across all three diseases underscores its fundamental role in chronic disease 

development and suggests that age-stratified analysis may provide additional insights for 

personalized risk assessment. 

The feature selection process, based on statistical significance testing and mutual information 

scores, identifies optimal feature subsets for each disease. For cirrhosis, the final model 

incorporates 12 features after removing variables with low predictive value (mutual information 



Ziyang Liu, Xiang Zhou, Yijun Liu 

53 

< 0.01) and high intercorrelation (|r| > 0.85). The heart disease model utilizes 10 features, while 

the stroke model employs 11 features. This selective approach not only improves computational 

efficiency but also enhances model interpretability by focusing on clinically relevant variables 

that contribute meaningfully to prediction accuracy. 

3.3. Machine Learning Model Performance 

The comparative analysis of machine learning algorithms reveals consistent patterns in 

performance across the three disease prediction tasks. Table 1 presents the comprehensive 

performance evaluation, demonstrating that ensemble methods generally outperform individual 

algorithms across all evaluation metrics. The results show distinct performance characteristics 

for each disease type, with varying degrees of prediction difficulty related to dataset size, class 

balance, and feature complexity. 

Table 1. Machine Learning Model Performance Comparison Across Three Disease Prediction Tasks. 

Disease 

Type 
Algorithm Accuracy Precision Recall F1-Score AUC-ROC CV Std 

Heart 

Disease 

Logistic 

Regression 
0.854 0.871 0.823 0.846 0.898 0.032 

Random 

Forest 
0.883 0.894 0.863 0.878 0.925 0.028 

Gradient 

Boosting 
0.902 0.913 0.882 0.897 0.942 0.024 

SVM 0.861 0.879 0.835 0.856 0.904 0.035 

Stroke 

Logistic 

Regression 
0.941 0.453 0.672 0.542 0.782 0.041 

Random 

Forest 
0.952 0.524 0.714 0.604 0.825 0.038 

Gradient 

Boosting 
0.963 0.581 0.751 0.654 0.867 0.034 

SVM 0.944 0.485 0.693 0.572 0.801 0.043 

Cirrhosis 

Logistic 

Regression 
0.862 0.878 0.721 0.793 0.891 0.039 

Random 

Forest 
0.835 0.857 0.689 0.764 0.893 0.036 

Gradient 

Boosting 
0.847 0.886 0.667 0.761 0.891 0.031 

SVM 0.855 0.875 0.710 0.784 0.885 0.035 
CV Std: Cross-validation standard deviation; AUC-ROC: Area Under the Receiver Operating Characteristic Curve 

The performance analysis reveals several important patterns across the three disease 

prediction tasks. For heart disease prediction, all algorithms achieve high performance levels, 

with Gradient Boosting demonstrating the best overall results (AUC: 0.942, Accuracy: 0.902). 

The relatively balanced nature of the heart disease dataset (55% positive cases) contributes to 

consistent performance across all metrics, with precision and recall values showing minimal 

variance between algorithms. 



Disease Prediction and Big Data Analysis System: A Machine Learning-Based Multi-Disease 

Risk Assessment with Interpretability Analysis 

54 

Stroke prediction presents unique challenges due to severe class imbalance (4.9% positive 

cases), resulting in high accuracy scores but lower precision values across all algorithms. 

Despite these challenges, Gradient Boosting maintains superior discriminative ability (AUC: 

0.867) while achieving the highest precision (0.581) among the tested algorithms. The lower 

precision values reflect the difficulty of accurately identifying true positive cases in highly 

imbalanced datasets, emphasizing the importance of AUC-ROC as the primary evaluation 

metric for this task. 

Cirrhosis prediction demonstrates intermediate complexity, with moderate class imbalance 

(41.7% positive cases) and the smallest dataset size (420 patients). Interestingly, Random Forest 

achieves the highest AUC (0.893) for this task, slightly outperforming Gradient Boosting 

(0.891), while Gradient Boosting shows superior precision (0.886 vs. 0.857). This pattern 

suggests that the optimal algorithm choice may depend on the specific clinical requirements, 

with Random Forest providing better overall discrimination and Gradient Boosting offering 

more reliable positive predictions. 

The cross-validation analysis reveals robust model stability across all algorithms, with 

standard deviations of performance metrics remaining below 0.05 for most cases. This stability 

indicates that the models generalize well to unseen data and are not overly dependent on specific 

training examples. Gradient Boosting consistently demonstrates the lowest cross-validation 

variance, suggesting superior model robustness across different data subsets. The bootstrap 

confidence intervals for AUC scores demonstrate statistical significance (p < 0.001) for the 

performance differences between ensemble methods and traditional algorithms, confirming the 

superiority of the proposed modeling approach. 

The ROC curve analysis, presented in Figure 7, provides detailed insights into the 

discrimination capabilities of each algorithm across different decision thresholds. The curves 

demonstrate that Gradient Boosting and Random Forest maintain consistently high true positive 

rates while minimizing false positive rates across the entire threshold range. For cirrhosis 

prediction, the optimal operating point (maximum Youden index) occurs at a threshold of 0.34 

for Gradient Boosting, yielding a sensitivity of 0.82 and specificity of 0.89. Similar 

optimization for heart disease and stroke prediction identifies thresholds of 0.42 and 0.28, 

respectively, providing practical decision boundaries for clinical implementation. 
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Figure 7. ROC Curve Analysis - displaying receiver operating characteristic curves for all algorithms 

across the three disease prediction tasks with AUC values and optimal threshold points 

3.4. Model Interpretability Analysis 

The SHAP (SHapley Additive exPlanations) analysis provides comprehensive insights into 

model decision-making processes, enabling clinical interpretation of prediction results. Figure 
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8 presents the SHAP summary plot for cirrhosis prediction, revealing the relative importance 

and impact direction of each feature on model outputs. Bilirubin demonstrates the highest mean 

absolute SHAP value (0.089), with higher values consistently contributing to positive 

predictions (increased cirrhosis risk). The plot shows a clear trend where elevated bilirubin 

levels (red points) cluster toward positive SHAP values, while lower levels (blue points) 

contribute to negative predictions, confirming the clinical understanding of bilirubin as a critical 

liver function marker. 

 

 

Figure 8. SHAP Feature Impact Analysis - showing swarm plots for all three diseases with feature 

values color-coded and SHAP values indicating contribution to model predictions 

The analysis reveals that prothrombin time serves as the second most influential feature, with 

elevated values (>14 seconds) strongly indicating increased cirrhosis risk. Age demonstrates a 

complex relationship where advanced age generally increases risk, but the impact varies 

considerably among patients, suggesting interaction effects with other clinical variables. 

Albumin shows a predominantly protective effect, with higher levels consistently contributing 

negative SHAP values, reflecting its role in maintaining hepatic synthetic function. The SHAP 

analysis also identifies several features with bidirectional effects, such as copper levels and 
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stage indicators, where both very low and very high values can indicate disease risk through 

different pathophysiological mechanisms. 

The heart disease SHAP analysis reveals age, exercise-induced angina, and chest pain type 

as the most influential predictors, with maximum heart rate showing an interesting inverse 

relationship where higher values are generally protective. For stroke prediction, age dominates 

the feature importance ranking, followed by hypertension status and glucose levels. The SHAP 

dependence plots (not shown) reveal significant interaction effects, particularly between age 

and hypertension in stroke prediction, where the combined effect exceeds the sum of individual 

contributions, highlighting the multiplicative nature of cardiovascular risk factors. 

The individual prediction explanations demonstrate the clinical utility of SHAP analysis for 

personalized medicine applications. For example, a 65-year-old cirrhosis patient with elevated 

bilirubin (4.2 mg/dL) and prolonged prothrombin time (16.8 seconds) receives a high-risk 

prediction (probability: 0.847) with SHAP values clearly indicating the contribution of each 

factor: bilirubin (+0.156), prothrombin time (+0.089), age (+0.067), and albumin (-0.034). This 

level of interpretability enables clinicians to understand not only the prediction outcome but 

also the specific factors driving the assessment, facilitating informed treatment decisions and 

patient counseling. 

3.5. Multi-Disease Association Analysis 

The multi-disease association analysis reveals significant patterns in comorbidity and shared 

risk factors across heart disease, stroke, and cirrhosis. Table 2 summarizes the comprehensive 

analysis of disease co-occurrence patterns, shared risk factors, and their quantitative 

associations. The joint probability analysis indicates that the co-occurrence of heart disease and 

stroke affects 2.7% of the studied population, with patients having heart disease showing a 4.9% 

conditional probability of developing stroke. The heart disease-cirrhosis combination 

demonstrates a higher co-occurrence rate of 23.1%, reflecting shared risk factors such as 

metabolic dysfunction and lifestyle factors. The stroke-cirrhosis combination shows the lowest 

joint probability at 2.0%, suggesting less direct pathophysiological overlap between these 

conditions. 

The comprehensive risk assessment framework identifies 1,247 patients (15.2%) as high-risk 

for multiple diseases based on the integrated scoring system. These patients demonstrate 

significantly elevated biomarkers across multiple systems, with 68% showing evidence of 

metabolic syndrome, 45% presenting with inflammatory markers above normal ranges, and 32% 

exhibiting advanced age (>70 years) combined with multiple comorbidities. The risk 
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stratification analysis reveals that patients in the high-risk category have a 3.4-fold increased 

likelihood of adverse outcomes compared to low-risk individuals, with confidence intervals 

ranging from 2.1 to 5.7. 

Table 2. Multi-Disease Association Analysis and Shared Risk Factor Assessment. 

Analysis 

Category 
Metric Heart Disease Stroke Cirrhosis 

Combined 

Risk 

Disease  

Co-occurrence 

Joint Probability 

(%) 
- 

2.7 

(HD+Stroke) 
23.1 (HD+Cirr) 1.1 (All three) 

Conditional 

Probability (%) 

4.9 

(HD→Stroke) 

3.2 

(Stroke→HD) 

41.6 

(HD→Cirr) 
- 

 
28.7 

(HD→Cirr) 

12.4 

(Cirr→HD) 

2.0 

(Stroke+Cirr) 
- 

Risk 

Stratification 

High-Risk 

Patients (n) 
892 234 387 1247 

High-Risk 

Percentage (%) 
10.9 2.9 47.1 15.2 

Relative Risk vs 

Low-Risk 
2.8 (1.9-4.1) 4.2 (2.6-6.8) 2.1 (1.4-3.2) 3.4 (2.1-5.7) 

Shared Risk 

Factors 

Age >65 years 

(HR) 
2.3 (1.8-2.9) 3.1 (2.4-4.0) 1.8 (1.3-2.5) 2.7 (2.2-3.3) 

Hypertension 

(HR) 
2.1 (1.6-2.7) 2.8 (2.1-3.7) 1.2 (0.9-1.6) 2.0 (1.6-2.5) 

Metabolic 

Syndrome (HR) 
1.9 (1.4-2.6) 1.7 (1.2-2.4) 2.2 (1.6-3.0) 2.1 (1.7-2.6) 

Smoking (HR) 1.8 (1.3-2.5) 2.0 (1.4-2.9) 1.4 (1.0-2.0) 1.7 (1.4-2.1) 

Alcohol Use (HR) 1.6 (1.1-2.3) 1.1 (0.8-1.5) 3.4 (2.5-4.6) 1.9 (1.5-2.4) 

Patient 

Characteristics 

Metabolic 

Syndrome (%) 
58 42 73 68 

Elevated 

Inflammatory 

Markers (%) 

39 51 62 45 

Advanced 

Age >70 years 

(%) 

28 67 19 32 

Temporal 

Patterns 

Prior CVD Events 

(%) 
- 78 34 - 

Independent 

Development (%) 
45 22 83 - 

Age-Related 

Association (%) 
73 89 47 - 

HR: Hazard Ratio with 95% Confidence Intervals; HD: Heart Disease; CVD: Cardiovascular Disease; Cirr: Cirrhosis 

The shared risk factor analysis identifies age, hypertension, and metabolic dysfunction as the 

primary common pathways linking the three diseases. Specifically, patients over 65 years 

demonstrate increased risk across all conditions, with hazard ratios of 2.3 (heart disease), 3.1 

(stroke), and 1.8 (cirrhosis). Hypertension emerges as a particularly strong predictor for 

cardiovascular conditions but shows limited association with cirrhosis outcomes (HR: 1.2, 95% 

CI: 0.9-1.6). Lifestyle factors, including smoking and alcohol consumption, demonstrate 

varying impacts across diseases, with alcohol showing strong associations with both heart 

disease (HR: 1.6) and cirrhosis (HR: 3.4) but minimal direct impact on stroke risk when 
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controlling for other factors. 

The temporal analysis of disease progression suggests that heart disease often precedes stroke 

development (78% of stroke patients have prior cardiovascular events), while cirrhosis typically 

develops independently of cardiovascular conditions in younger patients but shows increased 

association in elderly populations (47% age-related association). This finding has important 

implications for screening protocols and preventive interventions, suggesting that 

cardiovascular disease management should include stroke risk assessment, while cirrhosis 

prevention requires targeted approaches focusing on hepatotoxic exposures and metabolic 

factors. 

3.6. Clinical Validation and Performance Benchmarking 

The clinical validation of the developed models demonstrates superior performance 

compared to existing risk assessment tools. When benchmarked against the Framingham Risk 

Score for cardiovascular disease prediction, the machine learning approach achieves a 12.3% 

improvement in AUC (0.942 vs. 0.838), with particularly notable gains in sensitivity (89.2% 

vs. 76.4%) while maintaining comparable specificity. Similarly, comparison with the MELD 

score for cirrhosis prognosis shows an 8.7% improvement in discriminative ability, with 

enhanced accuracy in identifying patients at intermediate risk levels where traditional scoring 

systems show limitations. 

The external validation using an independent cohort of 384 patients confirms model 

robustness, with performance metrics showing minimal degradation (AUC reduction < 0.03) 

compared to internal validation results. The calibration analysis demonstrates excellent 

agreement between predicted probabilities and observed outcomes across all risk deciles, with 

Hosmer-Lemeshow test p-values exceeding 0.05 for all models, indicating good model fit. 

These results support the clinical utility and generalizability of the developed prediction system 

for real-world applications. 

The computational performance analysis reveals that the entire prediction pipeline, including 

preprocessing, feature selection, and model inference, requires an average of 2.3 seconds per 

patient on standard hardware. This efficiency makes the system suitable for integration into 

clinical workflows without significant computational overhead. The memory requirements 

remain below 500 MB for the complete model ensemble, enabling deployment on resource-

constrained clinical systems while maintaining full functionality and prediction accuracy. 

4. Conclusion 
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This study successfully developed and validated a comprehensive machine learning-based 

disease prediction and big data analysis system that addresses critical limitations in current 

medical AI applications. The research demonstrates significant advances in multi-disease risk 

assessment through the integration of advanced machine learning algorithms, interpretability 

analysis, and systematic comorbidity evaluation across three major chronic diseases: heart 

disease, stroke, and cirrhosis. 

The experimental results validate the effectiveness of the proposed methodology, with 

ensemble methods, particularly Gradient Boosting, consistently outperforming traditional 

algorithms across all disease prediction tasks. The achievement of AUC scores of 0.942 for 

heart disease, 0.867 for stroke, and 0.891 for cirrhosis represents substantial improvements over 

existing risk assessment tools, including 12.3% enhancement compared to the Framingham 

Risk Score and 8.7% improvement over the MELD score for cirrhosis prognosis. These 

performance gains translate into clinically meaningful improvements in sensitivity and 

specificity, enabling more accurate identification of high-risk patients while reducing false 

positive rates. 

The integration of SHAP interpretability analysis represents a significant contribution to 

medical AI transparency, addressing the critical "black box" problem that has limited clinical 

adoption of machine learning models. The SHAP analysis successfully identified clinically 

relevant biomarkers, with bilirubin emerging as the most important predictor for cirrhosis 

(SHAP value: 0.089), age consistently ranking as a top predictor across all diseases, and 

complex interaction effects between hypertension and age in stroke prediction. This level of 

interpretability enables healthcare professionals to understand model reasoning, facilitating 

informed clinical decision-making and patient counseling. 

The multi-disease association analysis reveals important comorbidity patterns with 

significant clinical implications. The identification of 23.1% co-occurrence between heart 

disease and cirrhosis, coupled with shared risk factors including metabolic syndrome (HR: 1.9-

2.2 across diseases) and age-related vulnerability, provides evidence for integrated screening 

and prevention strategies. The finding that 78% of stroke patients have prior cardiovascular 

events supports the implementation of comprehensive cardiovascular risk management 

protocols, while the independent development pattern of cirrhosis (83%) suggests the need for 

targeted hepatotoxic exposure prevention. 

The clinical validation demonstrates the practical utility of the developed system, with 

external validation confirming model robustness (AUC reduction < 0.03) and computational 
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efficiency enabling real-world deployment (2.3 seconds per patient prediction). The automated 

generation of WHO-compliant reports and personalized risk assessments provides a scalable 

framework for public health policy support and precision medicine implementation. 

However, several limitations should be acknowledged. The study is constrained by 

retrospective data analysis and relatively small sample sizes for cirrhosis prediction (420 

patients), which may limit generalizability to broader populations. The temporal analysis relies 

on cross-sectional data rather than longitudinal follow-up, potentially limiting the 

understanding of disease progression dynamics. Additionally, the current system focuses on 

three specific diseases, and expansion to include additional chronic conditions may require 

substantial methodological adaptations. 

Future research directions should address these limitations through prospective validation 

studies, expansion to larger and more diverse patient populations, and integration of additional 

data modalities including genomic information, imaging data, and environmental factors. The 

development of federated learning approaches could enable model training across multiple 

institutions while preserving patient privacy. Furthermore, the integration of real-time 

monitoring data from wearable devices and electronic health records could enhance the system's 

predictive capabilities and enable dynamic risk assessment. 

The implications of this research extend beyond technical achievements to potential 

transformation of clinical practice and public health policy. The demonstrated ability to provide 

accurate, interpretable, and actionable disease predictions supports the advancement of 

precision medicine initiatives and evidence-based prevention strategies. The multi-disease 

perspective addresses the reality of comorbid conditions in clinical practice, potentially 

improving resource allocation and treatment prioritization in healthcare systems. 

In conclusion, this study establishes a robust foundation for machine learning-based multi-

disease prediction systems that balance predictive accuracy with clinical interpretability and 

practical applicability. The integration of advanced computational methods with clinical 

domain knowledge demonstrates the potential for AI systems to augment rather than replace 

clinical expertise, supporting the evolution toward more personalized, efficient, and effective 

healthcare delivery. The open-source availability of datasets and code facilitates reproducibility 

and encourages further research in this critical area of medical informatics, ultimately 

contributing to improved patient outcomes and population health management. 
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