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Abstract. Hyperspectral remote sensing technology is a technology that utilizes
spectral imager on flying carriers such as satellites, airplanes, and drones to acquire
information about the earth's surface. With the development of deep learning, the
application of neural networks in hyperspectral image classification has attracted
much attention. However, hyperspectral image classification faces problems such
as high labeling sample costs and many redundant samples. Existing methods still
have shortcomings in utilizing unlabeled samples and improving classification
performance. To solve these problems, this study addresses the critical challenges
in hyperspectral image classification, namely high labeling costs and spectral
redundancy, by proposing a novel semi-supervised learning framework. The model
integrates three key components: (1) a 3D autoencoder for joint spectral-spatial
feature extraction, (2) an ECA attention mechanism for channel-wise feature
enhancement through adaptive weight learning, and (3) a Siamese network with
random sample pairing for supervised feature refinement. Unlike conventional
approaches, our framework establishes a synergistic mechanism between
unsupervised feature enhancement and supervised correction, connected through
innovative skip connections. Experimental validation demonstrates superior
performance, achieving 82.3% OA (k=0.74) on PaviaU and 87.4% OA (x=0.82) on
Salinas datasets, significantly outperforming existing methods while reducing
dependence on labeled samples. The results confirm the model's effectiveness in

improving feature discriminability and classification accuracy for hyperspectral

imagery.
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1.Introduction

Hyperspectral Remote Sensing Image (Hyper Spectral Image, HSI) typically contains hundreds
of spectral bands ranging from the visible to near-infrared spectrum. These spectral bands
provide rich spectral and spatial information, effectively reflecting Ground Object Features
such as landscape architecture, topography, rivers, and lakes 45! R € X P4 . iR IAKKE
5| FJE . . Hyperspectral image classification, as a fundamental task in processing hyperspectral
images, plays a critical role in various fields, such as vegetation disease and pest analysis[1]4&
RIKLB|5 FHIE. , soil composition detection &EiR!IAIR B F IR, , and ecosystem
monitoring[4]. However, traditional machine learning methods usually require manual feature
extraction. With the increasing volume of HSI data and application scenarios, the classification
performance of these traditional methods tends to be limited[6]. The success of Deep Learning
largely relies on a large number of Labeled Samples, but in HSI, obtaining Labeled Samples is
time-consuming and labor-intensive, requiring significant time and computational cost. Many
Labeled Samples are redundant, providing duplicate samples with similar or identical
information. Therefore, reducing the reliance on Labeled Samples and efficiently mining
valuable samples from datasets while eliminating redundant ones has become a research hotspot

in current Hyperspectral image classification methods.

Makantasis et al.[7] used Principal Component Analysis (PCA) to project hyperspectral image
data into a three-channel tensor and applied a two-dimensional Convolutional Neural Network
for classification. Slavkovikj et al.[8]proposed another similar approach, compressing the
spatial dimension of hyperspectral image data while retaining the spectral dimension to reduce
the three-dimensional data into a two-dimensional image, which is then processed using a
Convolutional Neural Network. Subsequently, the Semi-supervised Support Vector Machine
and Generative Semi-supervised Classification Method were proposed. In addition to
conventional semi-supervised learning, some researchers introduced the concept of few-shot
learning and applied it to the field of Hyperspectral image classification [8]. Gao et al. £5ix!
AILF5| FHIE. proposed a Deep Relation Network for few-shot learning in hyperspectral

images, while Li et al. [9]applied the Attention Mechanism for information transfer and
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proposed a Deep Cross-domain Few-shot Learning method. These few-shot learning
approaches mainly focus on cross-domain information transfer, leveraging known information

to assist in learning information from unknown classes.

The model proposed in this paper, based on autoencoders, attention mechanisms, and Siamese
network, is a Semi-supervised Learning Model[11]. It can fully utilize a large number of low-
cost unlabeled samples to train the autoencoder for feature extraction, and use a small number
of labeled samples to train the Siamese network to enhance Feature Extraction, reduce the use

of labeled samples, and lower costs.

Few-shot Learning methods often focus on Cross-domain Information Transfer and do not fully
utilize unlabeled data for feature correction. To address these issues, this paper proposes an
innovative Semi-supervised Learning Model that integrates autoencoders, ECA mechanism,

and Siamese networks. The innovations of this model are:

1) Using the 3-D Autoencoder method to train on a large number of unlabeled samples to learn
the unsupervised features of hyperspectral image samples. Unlike traditional semi-supervised
learning methods, our model can simultaneously extract the Spectral-spatial Features of
hyperspectral images through the 3-D Autoencoder without information loss. The encoder part
of the autoencoder learns the unsupervised features in the data, providing a basis for subsequent

Feature Enhancement and correction.

2) Using the ECA attention mechanism to construct an Attention Layer to help the neural
network better focus on the most important spectral channels or features in hyperspectral
images during the learning process, for enhancing the hyperspectral image sample features
extracted from the encoder in the 3-D Autoencoder. The ECA mechanism specifically addresses
the channel redundancy problem in hyperspectral data. By modeling the relationships between
channels, it adaptively learns the weights between each channel, allowing the network to focus
more on important feature channels, suppress irrelevant channels, and improve classification
performance. This mechanism significantly enhances the representation capability of features,

providing more accurate input for subsequent feature correction.

3) A Siamese network is trained using limited Labeled Samples and the Random Sample Pair
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Generation method to correct the sample features extracted from the Attention Layer. A
Residual Module is used to form the final sample features, which are then fed into the classifier
for classification. The synergistic mechanism between the Siamese network and the
Autoencoder achieves joint optimization of unsupervised features enhancement and Supervised
Features correction. Through the training of the Siamese network, the extracted features are
corrected using a small number of Labeled Samples, thereby effectively improving the
separability and discriminability of the features. The introduction of the Residual Module not

only accelerates the training process but also improves the accuracy of the model.

2. Methods for Hyperspectral image classification Based on

Semi-supervised Learning

Currently, most Hyperspectral image classification methods[12]based on Semi-supervised
Learning effectively combine Unsupervised Learning and Supervised Learning. Common
Unsupervised Learning methods include autoencoders, Clustering Method, and Contrastive
Learning. Common Supervised Learning methods include Support Vector Machine (SVM),
Multilayer Perceptron (MLP)4EiR!AK I 2|5 FH YK . , Siamese network, and Generative
Adversarial Network. This paper combines the autoencoder from Unsupervised Learning and
the Siamese network from Supervised Learning to form a Semi-supervised Learning method

for Hyperspectral image classification, addressing issues such as the cost of Labeled Samples.

2.1 Unsupervised Feature Extraction Based on 3D Autoencoder

2.1.1 Basic Principles of Autoencoder

Autoencoder is an unsupervised learning model, generally composed of an encoder and a
decoder. The encoder encodes the input into a hidden representation h, and the decoder decodes
the hidden representation h into an output. The model uses the input data itself as supervision
to guide the neural network in learning a latent mapping 45 #R!K#E|5| FIJ¥R. . The training
objective of the autoencoder is to make the input and output as similar as possible, which can

be expressed as shown in Equation 1.
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DX, X®) = min|X, XR|? (1)

2.1.2 Unsupervised Feature Extraction Based on 3D Autoencoder

According to the latest research on autoencoders £ =!AR3K 2] 5| FHPR . , this paper proposes a
Unsupervised Feature Extraction method based on 3D Autoencoder to process 3-D
Hyperspectral Image Cube. The 3-D Hyperspectral Image Cube is represented asX € RA*W*D |
where H, W, and D represent height, width, and number of spectral bands, respectively. At the
same time, the three-dimensional neighboring region centered at the spatial location (i, j) is
cropped as a Spectral-Spatial Combined Sample. and represent the size of the local region. In
this way, a neighboring region dataset is constructed, where i =1, ..., Hand j =1, ..., W. The
autoencoder consists of an encoder and a decoder module, and the hidden representation can
carry useful information from the Hyperspectral Image Cube. To simultaneously generate Joint
Spectral-Spatial Features from the HSI[15], a 3D Autoencoder approach is introduced, as

shown in Figure 1.

Figure 1. 3D Autoencoder module

2.2 Supervised Feature Extraction Based on Siamese network and
Attention Layer

2.2.1 Basic Principle of Siamese network

The Siamese network consists of two highly similar neural networks, hence also known as a
twin network. The Siamese network takes two input samples, referred to as a sample pair.
Training a Siamese network requires a labeled classification dataset. We need to construct
positive samples and negative samples using the training set. Each time, two samples are drawn

from the dataset to form a sample pair. If the pair belongs to the same class, it is considered a
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positive samples pair and labeled as 1; if they belong to different classes, it is a negative samples

pair and labeled as 0, as shown in Figure 2.

Husky Elephant

Figure 2. Training Dataset Setup of Siamese network

Assume we use a Convolutional Neural Network to extract features, denoted as f(x), as shown
in Figure 2-3. The input to the Siamese network is a sample pair, which is processed by the
Convolutional Neural Network to extract the Feature Vector. The Feature Vector extracted from
the first sample of the input pair is denoted ash; = f(x1), and similarly, the Feature Vector
from the second sample is denoted ash, = f(x;). A vector Z is then used to represent the
difference between the Feature Vectors of the two input samples, Z = |h; — h,|. This Z vector
is further processed by several Fully Connected Layers to produce a scalar output. Then, a
sigmoid activation function, ReLU activation function, or other activation function is applied,
resulting in a real number between 0 and 1. This output value indicates the similarity between
the two images: for a positive samples pair, the output is close to 1; for a negative samples pair,
the output is close to 0.We aim for the neural network's output to be close to the label, using the
difference between the label and the prediction as the loss function[17]. The loss function can
be the cross entropy between the label and the prediction, which measures the discrepancy

between them.
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Figure 3. Schematic diagram of the Siamese network training process

2.2.2 Constructing the Attention Layer Using the Efficient Channel Attention
Mechanism

The efficient channel attention mechanism is a type of self-attention mechanism that enhances
feature representation by modeling the inter-channel relationships. Hyperspectral images
contain a large amount of spectral information, with each pixel having data across multiple
spectral bands[ 18], providing richer data features for image classification. The efficient channel
attention module can be embedded after the convolutional layer to enhance the discriminative
capability of features. This module can adaptively learn the weights among different channels,
enabling the network to focus more on important feature channels while suppressing irrelevant
ones, thereby improving classification performance. In hyperspectral image classification,
where labeled samples are limited, the efficient channel attention module helps the model learn
more effectively from the limited labeled data.

In this work, the efficient channel attention mechanism is used to construct an attention layer,
which is placed after the encoder of the autoencoder. The features extracted by the autoencoder
are passed into the attention layer for feature enhancement, and the enhanced features are then

fed into the Siamese network for refinement, further strengthening feature extraction[19].
2.2.3 Random Sample Pair Generation Strategy

The input to the Siamese network in this work adopts the random sample pair generation

strategy, which is studied as follows. For hyperspectral image data, we assume there are C
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ground object classes and each class has N training samples (although in practice the number
of samples per class may vary, the final conclusion still holds). The training data for the c-th
class (where c=1, ..., C) is denoted as X = {x.1,...,X.n} , and the corresponding label data
€ RH'XW'XD’

is denoted as Yc = {y.1,...,Ycn}. For each x. n=1,...,N, it corresponds to

the local region centered at the central pixel, forming the entire training dataset A = {(X;,
Y,..., Xe Yo}
A sample pair is constructed py = {x;,x;},i,j = 1,...,C X N. The label(p;;) for the pair is

defined as shown in Equation 2.

0,y; #yj
» Ji Jj

Under the construction method of Equation 2, all possible combinations of sample pairs are
obtained, denoted as P = {p;;, label(p;;)},i,j = 1,...,C X N. Clearly, the number of elements

in P can be calculated as shown in Equation 3.
1
E=§CN(CN—1) (3)

Represents the total number of distinct combinations of selecting 2 samples from CxN samples.
This can be viewed as a combinatorial problem 45! Kk #& 2] 5] FHYK . . For the positive samples
pair dataset Ej,,;, which contains only sample pairslabel(p;;) =1 from the same class, the
number of elements Ej,in is calculated as follows: the first selection has CxN possibilities, and
the second selection, which must be from the same class as the first, has only N—1 possibilities.

The calculation is expressed in Equation 4.

1
Epos =5 CN(N = 1) (4)

For Negative Samples pairs, the first selection has CxN possibilities, and the second selection,
which must be from a different class than the first, has Nx(C—1) possibilities. The calculation

is expressed in Equation 5.
1 .2

Dividing Equation 5 by Equation 4 yields Equation 6.



International Journal of Advanced Al Applications

1
Ene 3CN?(C—1) N(C-1)
pos S CN(N —1)

From the above calculations, it can be seen that the number of Negative Samples pairs is
significantly greater than the number of positive samples pairs[20]. If such sample pairs are
used in training the model, the model is more likely to classify pairs as negative, which increases
the gradient and slows down the training speed per epoch. To address this issue, a random
sample pair generation method is proposed to balance the number of positive samples and
negative samples pairs, thereby reducing training time. For any sample in the training set,
randomly select one sample from the same class and one from a different class to form a positive
pair and a negative pair, respectively. The uniform sampling strategy is used here. This is done
in each training iteration Epo = Ejeg.

2.2.4 Supervised Feature Extraction Based on Siamese network and
Attention Layer

Since unsupervised features may lack separability, making it difficult to effectively classify
data, this paper designs a Siamese network and a limited labeled dataset to improve the
separability of features. The Siamese network constructed in this paper takes random sample
pairs as input. According to the characteristics of the Siamese network, x; and x; are processed
separately. The following is the processing ofx; , and the processing of x; is similar. After any
sample is processed by the trained 3-D Autoencoder, i=1,..., CxN, unsupervised features hL =
fe(x;) are obtained. For the features extracted from the autoencoder, this paper uses the
Attention Layer to further enhance the Expressive Power of these features, suppress irrelevant
channels, and improve classification performance, to obtain more accurate features: hl, =
f(x)). A Siamese network f,.(hl,) is connected after the Attention Layer to process the
unsupervised features extracted and enhanced by the autoencoder through the Attention Layer:
hi = fr(hfle), as well as the supervised features extracted by the Siamese network.

Therefore, the feature module of the Siamese network f;, (x;) used in this paper consists of a
strengthened feature module f,.(x;) combining Autoencoder and Attention Layer, and a

correction module f,.(hl,) with skip connections. The parameters of f,.(x;) are fixed after
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being trained in an unsupervised manner. We assume that each class has an implicit center point,
and supervised features hi can make samples closer to their own center point. For the feature
fusion method between the correction module and the strengthened feature module, this paper
chooses to add them together, which allows the two features to be simply added together,
enabling the network to simultaneously consider feature information from both paths. The

calculation expression is shown in Equation 7.

fo(x) = hie + fr(Rie) (D

In this way, the correction module becomes Residual Module, where fr(hlile) = fo(x;) — hie.
The Residual Module introduces skip connections, which allow gradients to directly skip one
or more layers, thereby maintaining the information transfer of gradients and alleviating the
problem of vanishing or exploding gradients. At the same time, it can also correct features to

improve the training speed and accuracy of the network.

After extracting the features of the input sample pairs, a metric module is used to calculate their
similarity. To increase the robustness of the module's hyperparameters, this paper uses a binary

Classifier that replaces the metric module to predict the matching probability of sample pairs.

3 Experimental Datasets and Model Methods

3.1 Experimental Datasets

3.1.1 Introduction to hyperspectral image Dataset PaviaU Dataset

The Pavia University dataset is a portion of hyperspectral data captured over the city of Pavia,
Italy, in 2003 by the German airborne reflective optics spectrometer imager 45! AR$R 25| H
PR . . This hyperspectral imager continuously captures 115 spectral band within the wavelength

range of 0.43-0.86pum, with a spatial resolution of 1.3 meters.
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Figure 4. Sample Image

Figure 5. Correctly Classified Image

Table 1. Categories and Corresponding Sample Counts in PaviaU Dataset

No. Category Sample Count
1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
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No. Category Sample Count
7 Bitumen 1330
Self-Blocking Bricks 3682
Shadows 947

3.1.2 Introduction to hyperspectral image Dataset Salinas Dataset

This scene was captured by the AVIRIS sensor over the Salinas Valley in California, consisting
of 224 spectral band and featuring high spatial resolution (3.7 meters per pixel). It represents

imagery of the Salinas Valley in California, USA, covering an area of 512 rows by 217 samples.

400F b
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Figure 7. Correctly Classified Image
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Table 2 Salinas Dataset Categories and Corresponding Sample Counts

No. Category Sample Count
1 Green weeds1 2009
2 Green weeds2 3726
3 Fallow Land 1976
4 Rough fallow 1394
5 Leveled Fallow Land 2678
6 Stubble 3959
7 Celery 3579
8 Untrained grapes 11271
9 Vineyard untrained 6203
10 Corn 3278
11 4-Week-Old lettuce 1068
12 5-Week-Old lettuce 1927
13 6-Week-Old lettuce 916
14 7-Week-0Old lettuce 1070
15 Vineyard vertical trellis 7268
16 Vineyard trellis 1807

4 Results and Analysis

This paper constructs models using two Hyperspectral Benchmark Image Dataset datasets:
PaviaU and Salinas, to evaluate the model's Overall Accuracy (OA) and Kappa. OA is defined
as the proportion of correctly classified samples to the total number of samples. Kappa is a
consistency metric based on the Confusion Matrix, kappa = (p, —pe)/(1 —pe)
wherep, accounts for Overall Accuracy and p,a hypothetical probability representing the
likelihood of random agreement. OA directly reflects the proportion of correct classifications;
however, it is possible for OA to be high while the classification accuracy for certain classes
remains low. Therefore, the Kappa coefficient is used to address this issue. If one class has poor
classification results, the Kappa value decreases, making Kappa a more robust evaluation metric
than OA. In the experiments, 10 Labeled Samples from each class in the dataset were randomly
selected to create the training set. The remaining Labeled Samples were used to form the test

set.

4.1 Model Training Parameter Settings
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Factors affecting the performance of deep learning models include data quality and quantity,
model depth, the number of hidden neurons, the size of the receptive field, batch size, and others.
This paper mainly considers the settings of the number of Hidden Neurons and the receptive
field size. An excessive number of Hidden Neurons increases model complexity and
computational cost, and may lead to Overfitting, where the model performs well on the training
set but has poor Generalization Ability on the test set. Too few Hidden Neurons reduce the
amount of information stored, which may affect the information transfer process during training.
Therefore, keeping other hyperparameters unchanged, experiments were conducted on PaviaU
and Salinas Dataset with hidden unit sizes of 64, 128, and 256. Selected OA and Kappa values

are presented as references for classification accuracy.

PaviaU
0.85
0.8
0.75
0.7
0.65
0.6
64 hidden neurons 128 hidden neurons 256 hidden neurons
= 0A kappa

Figure 8. shows the performance on the PaviaU Dataset with different numbers of Hidden Neurons

set.

Salinas
0.86

0.84 \
0.82
0.8
0.78
0.76
0.74
64 hidden neurons 128 hidden neurons 256 hidden neurons

= 0A kappa
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Figure 9. shows the performance on the Salinas Dataset with different numbers of Hidden Neurons set

According to the data tables in Figures 8 and 9, when conducting experiments on the PaviaU
Dataset, the optimal number of Hidden Neurons is approximately 128. Similarly, for the Salinas

Dataset, the optimal number is approximately 64.

The result region contains spatial information about the central pixel, which is an important
parameter for model performance. When the region is too small, the information from
neighboring areas is too limited, making it difficult for the model to capture sufficient
information, thereby reducing performance. If the region is too large, it may include pixels from
other classes, leading to misclassification. This introduces noise and increases the variability

among pixels of the same class, especially at the boundaries between different classes.

Therefore, keeping other hyperparameters unchanged, preliminary experiments were conducted
with region sizes of 7x7, 13x13, and 19%19 on the PaviaU and Salinas Dataset datasets. The
resulting Overall Accuracy and Kappa values were used as references for classification

accuracy.

PaviaU

0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7
0.68
0.66

0.64
7x7 neighborhood size 13x13 neighborhood size 19x19 neighborhood size

OA kappa

Figure 10. shows the performance of the method with different report region sizes on the PavialU

dataset.
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Salinas

0.88
0.86
0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7

0.68
7x7 neighborhood size 13x13 neighborhood size 19x19 neighborhood size

OA kappa

Figure 11. shows the performance of the proposed method with different report region sizes on the

Salinas dataset

According to the data tables in Figures 10 and 11, when conducting experiments on the PaviaU
and Salinas datasets, the optimal region size is approximately 13x13.Based on the above results,

the parameter settings for the table model configuration are summarized in Table 3.

Table 3 shows the parameter settings for the report region size on two datasets PaviaU Dataset Salinas

Dataset.
PaviaU Dataset Salinas Dataset
Hidden Neurons count 128 64
Spatial region size 13*13 13*13

During the training of the 3D Autoencoder, 20% of the data is used for testing and 80% for
training. The model parameters are optimized using the Adam Optimizer with a learning rate
set to le-4. During training, the objective of the model is to reduce the Mean Squared Error
(MSE) between the predicted output and the actual output by adjusting the parameters. MSE is
a commonly used loss function, particularly suitable for regression problems. It measures the
difference between the model’s predicted values and the actual values. By minimizing MSE,

the model can better fit the training data, thereby improving its performance.
A sparse network is trained using the previously described random sample pair generation
method, with a learning rate of le-3 using the Adam Optimizer and the Cross Entropy Loss

Function. To preserve the unsupervised features extracted by the autoencoder, the parameters
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of the encoder module are kept fixed. Finally, a simple logic is used to classify the features.
4.2 Ablation Analysis

3D Autoencoder and the proposed method in the paper: The proposed method enhances the
unsupervised features extracted by the autoencoder using the ECA (Efficient Channel Attention)
Mechanism, and then combines them with the Supervised Features extracted by the Siamese
network. Unlike other approaches that transmit Hyperspectral Image samples to two different
networks to separately create unsupervised and Supervised Features and then fuse them, this
paper enhances the extracted unsupervised features through ECA attention feature training, and
then selects the Supervised Features extracted from the adjacent Siamese network to correct the
unsupervised features, in order to improve the modifiability of the features. This part is
completed by the module. To validate the improvements of the method proposed in the paper
over 3D Autoencoder, both 3D Autoencoder and the proposed method were tested, as shown

in Table 4.

Table 4 Performance comparison of the proposed method and 3D Autoencoder on two datasets

Dataset Method OA (%) Kappa (%)
) 3D Autoencoder 79 75
PaviaU Dataset
The method 81 77
3D Autoencoder 86 82

Salinas Dataset
The method 90 86

As shown in the data table, the proposed method in the paper achieves a 3-percentage-point
improvement in Overall Accuracy and a 2-percentage-point improvement in Kappa over 3D
Autoencoder on the PaviaU Dataset. On the Salinas Dataset, it achieves a 4-percentage-point
improvement in Overall Accuracy and a 4-percentage-point improvement in Kappa. This
demonstrates that the proposed method, which integrates the Siamese network and Efficient
Channel Attention mechanism, effectively addresses the shortcomings in unsupervised features

and correction modules.
4.3 Comparative Experiments

This paper selects SAE-LR (Stacked Autoencoder with Logistic Regression)[43], Two-



International Journal of Advanced Al Applications

CNNJ44], 3DCAE (3D Convolutional Autoencoder)[45], and the graph convolutional network

GCN (Graph Convolutional Network)[46] for comparison.

SAE-LR (Stacked Autoencoder with Logistic Regression) is an autoencoder composed of a
Fully Connected Layer network. Before classification, it preprocesses the original spectral and
spatial vectors using the PCA (Principal Component Analysis) Technique, and fuses them into
a joint spectral-spatial vector. The parameters of the Encoder and decoder modules in this
method are bundled together. Two-CNN is a dual-branch model that separately extracts
Spectral Features and Spatial Features, and then fuses them. To perform well with limited
training samples, this method uses Transfer Learning to pre-train the model, transferring
knowledge from the source data to the target dataset. 3DCAE (3D Convolutional Autoencoder)
is a 3D CNN autoencoder trained using a large number of unlabeled samples, and then classifies
the extracted features using a Support Vector Machine. Since graph data has stronger
representation capabilities than grid data, GCN (Graph Convolutional Network) is introduced
for Hyperspectral image classification. During training, the graph data includes both labeled
and unlabeled nodes. It leverages both labeled and unlabeled information, making it a Semi-

supervised method.

The above methods are evaluated on the PaviaU Dataset, with Overall Accuracy and Kappa

selected as references for classification accuracy.

Table 5 Performance of different methods on the PaviaU Dataset

Proposed
SAE-LR Two-CNN 3DCAE GCN
Method
OA (%) 72.4% 76.05% 72.35% 64.36% 82.3%
Kappa 0.54 0.69 0.52 0.65 0.74

The experimental results show that the proposed method outperforms the other four methods in
both metrics. SAE-LR (Stacked Autoencoder with Logistic Regression) and 3DCAE (3D
Convolutional Autoencoder) are both models based on Encoder, with the difference being that
the former is a fully connected network while the latter is a 3-D convolutional network. Their
poor performance on the PaviaU Dataset demonstrates that relying solely on Encoder to obtain

unsupervised features without further refinement makes it difficult to improve classification
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accuracy. This also validates the effectiveness of enhancing Feature Extraction using the
Siamese network and ECA (Efficient Channel Attention) Mechanism as proposed in this paper.
The performance of GCN (Graph Convolutional Network) depends on the meticulous
construction of graphs and node features; poor graph construction and simplistic node feature

generation can reduce classification accuracy.

The above methods were evaluated on the Salinas Dataset, using Overall Accuracy and Kappa

as classification accuracy metrics.

Table 6 Performance of different methods on the Salinas Dataset

Proposed
SAE-LR Two-CNN 3DCAE GCN
Method
OA(%) 68.2% 81.25% 75.72% 86.2% 87.4%
Kappa 0.58 0.71 0.70 0.79 0.82

The experimental results show that, unlike the PaviaU Dataset, all models exhibit significant
improvements in both Overall Accuracy and Kappa on the Salinas Dataset. This can be
attributed to the regular distribution of ground objects in the Salinas Dataset, which facilitates
classification. Compared to the SAE-LR (Stacked Autoencoder with Logistic Regression) and
3DCAE (3D Convolutional Autoencoder) methods, the proposed method shows a clear
improvement, further proving the effectiveness of using the Siamese network and ECA

(Efficient Channel Attention) Mechanism to refine and enhance unsupervised features.

Overall, the proposed model demonstrates certain advantages over the other four methods in

terms of Overall Accuracy and Kappa Coefficient on both the PaviaU and Salinas Dataset.

5 Conclusion

The main work of this study is the construction of a Semi-supervised Learning Model for
Hyperspectral image classification. The model consists of an autoencoder, an Attention Layer,
and a Siamese network. The autoencoder is trained on a large amount of unlabeled data to learn
unsupervised features of the samples. These unsupervised features are then enhanced through
the Attention Layer to form enhanced features. Subsequently, the Siamese network is trained

using a small amount of labeled data and randomly generated sample pairs to learn supervised
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features of the samples. The enhanced features are then input into the trained Siamese network,
where they are refined using the supervised features to produce corrected features. Finally, the
corrected features and enhanced features are fused via skip connections to form the final latent
features of the samples. These final latent features, along with the HSI samples, are input into
a logistic Classifier for classification to obtain the final results. As a Semi-supervised Learning
Model, the model leverages a large number of unlabeled samples and a small number of labeled
samples, effectively addressing the high labeling cost issue in Hyperspectral image

classification.

1) The unsupervised features extracted by the 3D Autoencoder are input into the Attention
Layer for feature enhancement. The enhanced features are then input into the Siamese network,
where they are refined using the supervised features learned by the Siamese network. A random
sample pair generation method is used to construct input sample pairs for the Siamese network,

reducing the reliance on labeled samples.

2) Another major contribution of this study is the validation of the effectiveness of adding the
Attention Layer and Siamese network on top of the autoencoder for feature enhancement and
correction through ablation experiments. The proposed Semi-supervised Learning Model is
applied to two benchmark hyperspectral image datasets, the PaviaU Dataset and the Salinas
Dataset, achieving an Overall Accuracy and Kappa Coefficient of 82.3%, 0.74 and 87.4%, 0.82

respectively, demonstrating the effectiveness of the proposed model.
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