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Abstract. Hyperspectral remote sensing technology is a technology that utilizes 

spectral imager on flying carriers such as satellites, airplanes, and drones to acquire 

information about the earth's surface. With the development of deep learning, the 

application of neural networks in hyperspectral image classification has attracted 

much attention. However, hyperspectral image classification faces problems such 

as high labeling sample costs and many redundant samples. Existing methods still 

have shortcomings in utilizing unlabeled samples and improving classification 

performance. To solve these problems, this study addresses the critical challenges 

in hyperspectral image classification, namely high labeling costs and spectral 

redundancy, by proposing a novel semi-supervised learning framework. The model 

integrates three key components: (1) a 3D autoencoder for joint spectral-spatial 

feature extraction, (2) an ECA attention mechanism for channel-wise feature 

enhancement through adaptive weight learning, and (3) a Siamese network with 

random sample pairing for supervised feature refinement. Unlike conventional 

approaches, our framework establishes a synergistic mechanism between 

unsupervised feature enhancement and supervised correction, connected through 

innovative skip connections. Experimental validation demonstrates superior 

performance, achieving 82.3% OA (κ=0.74) on PaviaU and 87.4% OA (κ=0.82) on 

Salinas datasets, significantly outperforming existing methods while reducing 

dependence on labeled samples. The results confirm the model's effectiveness in 

improving feature discriminability and classification accuracy for hyperspectral 

imagery. 
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1.Introduction 

Hyperspectral Remote Sensing Image (Hyper Spectral Image, HSI) typically contains hundreds 

of spectral bands ranging from the visible to near-infrared spectrum. These spectral bands 

provide rich spectral and spatial information, effectively reflecting Ground Object Features 

such as landscape architecture, topography, rivers, and lakes 错误!未定义书签。错误!未找到

引用源。. Hyperspectral image classification, as a fundamental task in processing hyperspectral 

images, plays a critical role in various fields, such as vegetation disease and pest analysis[1]错

误!未找到引用源。 , soil composition detection 错误!未找到引用源。 , and ecosystem 

monitoring[4]. However, traditional machine learning methods usually require manual feature 

extraction. With the increasing volume of HSI data and application scenarios, the classification 

performance of these traditional methods tends to be limited[6]. The success of Deep Learning 

largely relies on a large number of Labeled Samples, but in HSI, obtaining Labeled Samples is 

time-consuming and labor-intensive, requiring significant time and computational cost. Many 

Labeled Samples are redundant, providing duplicate samples with similar or identical 

information. Therefore, reducing the reliance on Labeled Samples and efficiently mining 

valuable samples from datasets while eliminating redundant ones has become a research hotspot 

in current Hyperspectral image classification methods. 

Makantasis et al.[7] used Principal Component Analysis (PCA) to project hyperspectral image 

data into a three-channel tensor and applied a two-dimensional Convolutional Neural Network 

for classification. Slavkovikj et al.[8]proposed another similar approach, compressing the 

spatial dimension of hyperspectral image data while retaining the spectral dimension to reduce 

the three-dimensional data into a two-dimensional image, which is then processed using a 

Convolutional Neural Network. Subsequently, the Semi-supervised Support Vector Machine 

and Generative Semi-supervised Classification Method were proposed. In addition to 

conventional semi-supervised learning, some researchers introduced the concept of few-shot 

learning and applied it to the field of Hyperspectral image classification [8]. Gao et al. 错误!

未找到引用源。proposed a Deep Relation Network for few-shot learning in hyperspectral 

images, while Li et al. [9]applied the Attention Mechanism for information transfer and 
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proposed a Deep Cross-domain Few-shot Learning method. These few-shot learning 

approaches mainly focus on cross-domain information transfer, leveraging known information 

to assist in learning information from unknown classes. 

The model proposed in this paper, based on autoencoders, attention mechanisms, and Siamese 

network, is a Semi-supervised Learning Model[11]. It can fully utilize a large number of low-

cost unlabeled samples to train the autoencoder for feature extraction, and use a small number 

of labeled samples to train the Siamese network to enhance Feature Extraction, reduce the use 

of labeled samples, and lower costs. 

Few-shot Learning methods often focus on Cross-domain Information Transfer and do not fully 

utilize unlabeled data for feature correction. To address these issues, this paper proposes an 

innovative Semi-supervised Learning Model that integrates autoencoders, ECA mechanism, 

and Siamese networks. The innovations of this model are: 

1) Using the 3-D Autoencoder method to train on a large number of unlabeled samples to learn 

the unsupervised features of hyperspectral image samples. Unlike traditional semi-supervised 

learning methods, our model can simultaneously extract the Spectral-spatial Features of 

hyperspectral images through the 3-D Autoencoder without information loss. The encoder part 

of the autoencoder learns the unsupervised features in the data, providing a basis for subsequent 

Feature Enhancement and correction. 

2) Using the ECA attention mechanism to construct an Attention Layer to help the neural 

network better focus on the most important spectral channels or features in hyperspectral 

images during the learning process, for enhancing the hyperspectral image sample features 

extracted from the encoder in the 3-D Autoencoder. The ECA mechanism specifically addresses 

the channel redundancy problem in hyperspectral data. By modeling the relationships between 

channels, it adaptively learns the weights between each channel, allowing the network to focus 

more on important feature channels, suppress irrelevant channels, and improve classification 

performance. This mechanism significantly enhances the representation capability of features, 

providing more accurate input for subsequent feature correction. 

3) A Siamese network is trained using limited Labeled Samples and the Random Sample Pair 
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Generation method to correct the sample features extracted from the Attention Layer. A 

Residual Module is used to form the final sample features, which are then fed into the classifier 

for classification. The synergistic mechanism between the Siamese network and the 

Autoencoder achieves joint optimization of unsupervised features enhancement and Supervised 

Features correction. Through the training of the Siamese network, the extracted features are 

corrected using a small number of Labeled Samples, thereby effectively improving the 

separability and discriminability of the features. The introduction of the Residual Module not 

only accelerates the training process but also improves the accuracy of the model. 

2. Methods for Hyperspectral image classification Based on 

Semi-supervised Learning 

Currently, most Hyperspectral image classification methods[12]based on Semi-supervised 

Learning effectively combine Unsupervised Learning and Supervised Learning. Common 

Unsupervised Learning methods include autoencoders, Clustering Method, and Contrastive 

Learning. Common Supervised Learning methods include Support Vector Machine (SVM), 

Multilayer Perceptron (MLP)错误 !未找到引用源。 , Siamese network, and Generative 

Adversarial Network. This paper combines the autoencoder from Unsupervised Learning and 

the Siamese network from Supervised Learning to form a Semi-supervised Learning method 

for Hyperspectral image classification, addressing issues such as the cost of Labeled Samples. 

2.1 Unsupervised Feature Extraction Based on 3D Autoencoder 

2.1.1 Basic Principles of Autoencoder   

Autoencoder is an unsupervised learning model, generally composed of an encoder and a 

decoder. The encoder encodes the input into a hidden representation h, and the decoder decodes 

the hidden representation h into an output. The model uses the input data itself as supervision 

to guide the neural network in learning a latent mapping 错误!未找到引用源。. The training 

objective of the autoencoder is to make the input and output as similar as possible, which can 

be expressed as shown in Equation 1.   
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𝐷(𝑋, 𝑋𝑅) = min|𝑋, 𝑋𝑅|2 （1） 

2.1.2 Unsupervised Feature Extraction Based on 3D Autoencoder   

According to the latest research on autoencoders 错误!未找到引用源。, this paper proposes a 

Unsupervised Feature Extraction method based on 3D Autoencoder to process 3-D 

Hyperspectral Image Cube. The 3-D Hyperspectral Image Cube is represented as𝑋 ∈ 𝑅𝐻×𝑊×𝐷 , 

where H, W, and D represent height, width, and number of spectral bands, respectively. At the 

same time, the three-dimensional neighboring region centered at the spatial location (i, j) is 

cropped as a Spectral-Spatial Combined Sample. and represent the size of the local region. In 

this way, a neighboring region dataset is constructed, where i = 1, ..., H and j = 1, ..., W. The 

autoencoder consists of an encoder and a decoder module, and the hidden representation can 

carry useful information from the Hyperspectral Image Cube. To simultaneously generate Joint 

Spectral-Spatial Features from the HSI[15], a 3D Autoencoder approach is introduced, as 

shown in Figure 1. 

 

Figure 1. 3D Autoencoder module   

2.2 Supervised Feature Extraction Based on Siamese network and 

Attention Layer 

2.2.1 Basic Principle of Siamese network 

The Siamese network consists of two highly similar neural networks, hence also known as a 

twin network. The Siamese network takes two input samples, referred to as a sample pair. 

Training a Siamese network requires a labeled classification dataset. We need to construct 

positive samples and negative samples using the training set. Each time, two samples are drawn 

from the dataset to form a sample pair. If the pair belongs to the same class, it is considered a 
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positive samples pair and labeled as 1; if they belong to different classes, it is a negative samples 

pair and labeled as 0, as shown in Figure 2. 

 

Figure 2. Training Dataset Setup of Siamese network 

Assume we use a Convolutional Neural Network to extract features, denoted as 𝑓(𝑥), as shown 

in Figure 2-3. The input to the Siamese network is a sample pair, which is processed by the 

Convolutional Neural Network to extract the Feature Vector. The Feature Vector extracted from 

the first sample of the input pair is denoted asℎ1 = 𝑓(𝑥1), and similarly, the Feature Vector 

from the second sample is denoted asℎ2 = 𝑓(𝑥2) . A vector   is then used to represent the 

difference between the Feature Vectors of the two input samples, 𝑍 = |ℎ1 − ℎ2|. This   vector 

is further processed by several Fully Connected Layers to produce a scalar output. Then, a 

sigmoid activation function, ReLU activation function, or other activation function is applied, 

resulting in a real number between 0 and 1. This output value indicates the similarity between 

the two images: for a positive samples pair, the output is close to 1; for a negative samples pair, 

the output is close to 0.We aim for the neural network's output to be close to the label, using the 

difference between the label and the prediction as the loss function[17]. The loss function can 

be the cross entropy between the label and the prediction, which measures the discrepancy 

between them. 
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Figure 3. Schematic diagram of the Siamese network training process 

2.2.2 Constructing the Attention Layer Using the Efficient Channel Attention 

Mechanism   

The efficient channel attention mechanism is a type of self-attention mechanism that enhances 

feature representation by modeling the inter-channel relationships. Hyperspectral images 

contain a large amount of spectral information, with each pixel having data across multiple 

spectral bands[18], providing richer data features for image classification. The efficient channel 

attention module can be embedded after the convolutional layer to enhance the discriminative 

capability of features. This module can adaptively learn the weights among different channels, 

enabling the network to focus more on important feature channels while suppressing irrelevant 

ones, thereby improving classification performance. In hyperspectral image classification, 

where labeled samples are limited, the efficient channel attention module helps the model learn 

more effectively from the limited labeled data. 

In this work, the efficient channel attention mechanism is used to construct an attention layer, 

which is placed after the encoder of the autoencoder. The features extracted by the autoencoder 

are passed into the attention layer for feature enhancement, and the enhanced features are then 

fed into the Siamese network for refinement, further strengthening feature extraction[19]. 

2.2.3 Random Sample Pair Generation Strategy   

The input to the Siamese network in this work adopts the random sample pair generation 

strategy, which is studied as follows. For hyperspectral image data, we assume there are C 
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ground object classes and each class has N training samples (although in practice the number 

of samples per class may vary, the final conclusion still holds). The training data for the c-th 

class (where c = 1, ..., C) is denoted as 𝑋𝐶 = {𝑥𝑐,1, . . . , 𝑥𝑐,𝑁} , and the corresponding label data 

is denoted as 𝑌𝐶 = {𝑦𝑐,1, . . . , 𝑦𝑐,𝑁}. For each 𝑥𝑐,𝑛 ∈ 𝑅𝐻′×𝑊′×𝐷, 𝑛 = 1, . . . , 𝑁, it corresponds to 

the local region centered at the central pixel, forming the entire training dataset 𝐴 = {(𝑋1，

𝑌1), . . . , (𝑋𝐶，𝑌𝐶)}. 

A sample pair is constructed 𝑝ij = {𝑥𝑖, 𝑥𝑗}, 𝑖, 𝑗 = 1, . . . , 𝐶 × 𝑁. The label(𝑝ij) for the pair is 

defined as shown in Equation 2. 

label(𝑝ij) = {
0, 𝑦𝑖 ≠ 𝑦𝑗

1, 𝑦𝑖＝𝑦𝑗

 （2） 

Under the construction method of Equation 2, all possible combinations of sample pairs are 

obtained, denoted as 𝑃 = {𝑝𝑖𝑗, 𝑙𝑎𝑏𝑒𝑙(𝑝𝑖𝑗)}, 𝑖, 𝑗 = 1, . . . , 𝐶 × 𝑁. Clearly, the number of elements 

in P can be calculated as shown in Equation 3. 

𝐸 =
1

2
𝐶𝑁(𝐶𝑁 − 1) （3） 

Represents the total number of distinct combinations of selecting 2 samples from C×N samples. 

This can be viewed as a combinatorial problem 错误!未找到引用源。. For the positive samples 

pair dataset  𝐸pos , which contains only sample pairs label(𝑝ij) = 1  from the same class, the 

number of elements 𝐸posin is calculated as follows: the first selection has C×N possibilities, and 

the second selection, which must be from the same class as the first, has only N−1 possibilities. 

The calculation is expressed in Equation 4. 

𝐸pos =
1

2
𝐶𝑁(𝑁 − 1) （4） 

For Negative Samples pairs, the first selection has C×N possibilities, and the second selection, 

which must be from a different class than the first, has N×(C−1) possibilities. The calculation 

is expressed in Equation 5. 

𝐸neg =
1

2
𝐶𝑁2(𝐶 − 1) （5） 

Dividing Equation 5 by Equation 4 yields Equation 6. 



International Journal of Advanced AI Applications 

 

𝐸neg

𝐸pos
=

1
2 𝐶𝑁2(𝐶 − 1)

1
2 𝐶𝑁(𝑁 − 1)

=
𝑁(𝐶 − 1)

𝑁 − 1
≈ 𝐶 − 1 （6） 

From the above calculations, it can be seen that the number of Negative Samples pairs is 

significantly greater than the number of positive samples pairs[20]. If such sample pairs are 

used in training the model, the model is more likely to classify pairs as negative, which increases 

the gradient and slows down the training speed per epoch. To address this issue, a random 

sample pair generation method is proposed to balance the number of positive samples and 

negative samples pairs, thereby reducing training time. For any sample in the training set, 

randomly select one sample from the same class and one from a different class to form a positive 

pair and a negative pair, respectively. The uniform sampling strategy is used here. This is done 

in each training iteration 𝐸pos = 𝐸neg.   

2.2.4 Supervised Feature Extraction Based on Siamese network and 

Attention Layer 

Since unsupervised features may lack separability, making it difficult to effectively classify 

data, this paper designs a Siamese network and a limited labeled dataset to improve the 

separability of features. The Siamese network constructed in this paper takes random sample 

pairs as input. According to the characteristics of the Siamese network, 𝑥𝑖 and 𝑥𝑗  are processed 

separately. The following is the processing of𝑥𝑖 , and the processing of 𝑥𝑗 is similar. After any 

sample is processed by the trained 3-D Autoencoder, i=1,..., C×N, unsupervised features ℎ𝑢
𝑖 =

𝑓𝑒(𝑥𝑖)  are obtained. For the features extracted from the autoencoder, this paper uses the 

Attention Layer to further enhance the Expressive Power of these features, suppress irrelevant 

channels, and improve classification performance, to obtain more accurate features: ℎue
𝑖 =

𝑓𝑒(𝑥𝑖) . A Siamese network  𝑓𝑟(ℎ𝑢𝑒
𝑖 )  is connected after the Attention Layer to process the 

unsupervised features extracted and enhanced by the autoencoder through the Attention Layer: 

ℎ𝑠
𝑖 = 𝑓𝑟(ℎue

𝑖 ), as well as the supervised features extracted by the Siamese network. 

Therefore, the feature module of the Siamese network 𝑓𝜑（𝑥𝑖）used in this paper consists of a 

strengthened feature module  𝑓ue(𝑥𝑖)  combining Autoencoder and Attention Layer, and a 

correction module 𝑓𝑟(ℎ𝑢𝑒
𝑖 ) with skip connections. The parameters of 𝑓ue(𝑥𝑖) are fixed after 
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being trained in an unsupervised manner. We assume that each class has an implicit center point, 

and supervised features ℎ𝑠
𝑖
 can make samples closer to their own center point. For the feature 

fusion method between the correction module and the strengthened feature module, this paper 

chooses to add them together, which allows the two features to be simply added together, 

enabling the network to simultaneously consider feature information from both paths. The 

calculation expression is shown in Equation 7. 

𝑓𝜑(𝑥𝑖) = ℎue
𝑖 + 𝑓𝑟(ℎue

𝑖 ) （7） 

In this way, the correction module becomes Residual Module, where 𝑓𝑟(ℎue
𝑖 ) = 𝑓𝜑(𝑥𝑖) − ℎue

𝑖
.  

The Residual Module introduces skip connections, which allow gradients to directly skip one 

or more layers, thereby maintaining the information transfer of gradients and alleviating the 

problem of vanishing or exploding gradients. At the same time, it can also correct features to 

improve the training speed and accuracy of the network. 

After extracting the features of the input sample pairs, a metric module is used to calculate their 

similarity. To increase the robustness of the module's hyperparameters, this paper uses a binary 

Classifier that replaces the metric module to predict the matching probability of sample pairs. 

3 Experimental Datasets and Model Methods   

3.1 Experimental Datasets   

3.1.1 Introduction to hyperspectral image Dataset PaviaU Dataset   

The Pavia University dataset is a portion of hyperspectral data captured over the city of Pavia, 

Italy, in 2003 by the German airborne reflective optics spectrometer imager 错误!未找到引用

源。. This hyperspectral imager continuously captures 115 spectral band within the wavelength 

range of 0.43–0.86μm, with a spatial resolution of 1.3 meters. 
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Figure 4. Sample Image 

 

Figure 5. Correctly Classified Image   

Table 1. Categories and Corresponding Sample Counts in PaviaU Dataset   

No. Category  Sample Count   

1 Asphalt 6631 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare Soil 5029 
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No. Category  Sample Count   

7 Bitumen 1330 

8 Self-Blocking Bricks 3682 

9 Shadows 947 

3.1.2 Introduction to hyperspectral image Dataset Salinas Dataset   

This scene was captured by the AVIRIS sensor over the Salinas Valley in California, consisting 

of 224 spectral band and featuring high spatial resolution (3.7 meters per pixel). It represents 

imagery of the Salinas Valley in California, USA, covering an area of 512 rows by 217 samples. 

 

Figure 6. Sample Image 

 

Figure 7. Correctly Classified Image 
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Table 2 Salinas Dataset Categories and Corresponding Sample Counts   

No. Category  Sample Count   

1 Green weeds1 2009 

2 Green weeds2 3726 

3 Fallow Land 1976 

4 Rough fallow 1394 

5 Leveled Fallow Land 2678 

6 Stubble 3959 

7 Celery 3579 

8 Untrained grapes  11271 

9 Vineyard untrained 6203 

10 Corn  3278 

11 4-Week-Old lettuce  1068 

12 5-Week-Old lettuce 1927 

13 6-Week-Old lettuce 916 

14 7-Week-Old lettuce 1070 

15 Vineyard vertical trellis 7268 

16 Vineyard trellis 1807 

4 Results and Analysis 

This paper constructs models using two Hyperspectral Benchmark Image Dataset datasets: 

PaviaU and Salinas, to evaluate the model's Overall Accuracy (OA) and Kappa. OA is defined 

as the proportion of correctly classified samples to the total number of samples. Kappa is a 

consistency metric based on the Confusion Matrix, kappa = (𝑝𝑜 − 𝑝𝑒)/(1 − 𝑝𝑒) 

where𝑝𝑜 accounts for Overall Accuracy and 𝑝𝑒 a hypothetical probability representing the 

likelihood of random agreement. OA directly reflects the proportion of correct classifications; 

however, it is possible for OA to be high while the classification accuracy for certain classes 

remains low. Therefore, the Kappa coefficient is used to address this issue. If one class has poor 

classification results, the Kappa value decreases, making Kappa a more robust evaluation metric 

than OA. In the experiments, 10 Labeled Samples from each class in the dataset were randomly 

selected to create the training set. The remaining Labeled Samples were used to form the test 

set. 

4.1 Model Training Parameter Settings 
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Factors affecting the performance of deep learning models include data quality and quantity, 

model depth, the number of hidden neurons, the size of the receptive field, batch size, and others. 

This paper mainly considers the settings of the number of Hidden Neurons and the receptive 

field size. An excessive number of Hidden Neurons increases model complexity and 

computational cost, and may lead to Overfitting, where the model performs well on the training 

set but has poor Generalization Ability on the test set. Too few Hidden Neurons reduce the 

amount of information stored, which may affect the information transfer process during training. 

Therefore, keeping other hyperparameters unchanged, experiments were conducted on PaviaU 

and Salinas Dataset with hidden unit sizes of 64, 128, and 256. Selected OA and Kappa values 

are presented as references for classification accuracy.  
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Figure 8. shows the performance on the PaviaU Dataset with different numbers of Hidden Neurons 

set.   
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Figure 9. shows the performance on the Salinas Dataset with different numbers of Hidden Neurons set  

According to the data tables in Figures 8 and 9, when conducting experiments on the PaviaU 

Dataset, the optimal number of Hidden Neurons is approximately 128. Similarly, for the Salinas 

Dataset, the optimal number is approximately 64.   

The result region contains spatial information about the central pixel, which is an important 

parameter for model performance. When the region is too small, the information from 

neighboring areas is too limited, making it difficult for the model to capture sufficient 

information, thereby reducing performance. If the region is too large, it may include pixels from 

other classes, leading to misclassification. This introduces noise and increases the variability 

among pixels of the same class, especially at the boundaries between different classes.   

Therefore, keeping other hyperparameters unchanged, preliminary experiments were conducted 

with region sizes of 7×7, 13×13, and 19×19 on the PaviaU and Salinas Dataset datasets. The 

resulting Overall Accuracy and Kappa values were used as references for classification 

accuracy.   
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Figure 10. shows the performance of the method with different report region sizes on the PaviaU 

dataset.  
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Figure 11. shows the performance of the proposed method with different report region sizes on the 

Salinas dataset  

According to the data tables in Figures 10 and 11, when conducting experiments on the PaviaU 

and Salinas datasets, the optimal region size is approximately 13×13.Based on the above results, 

the parameter settings for the table model configuration are summarized in Table 3. 

Table 3 shows the parameter settings for the report region size on two datasets PaviaU Dataset Salinas 

Dataset. 

 PaviaU Dataset Salinas Dataset   

Hidden Neurons count 128 64 

Spatial region size 13*13 13*13 

During the training of the 3D Autoencoder, 20% of the data is used for testing and 80% for 

training. The model parameters are optimized using the Adam Optimizer with a learning rate 

set to 1e-4. During training, the objective of the model is to reduce the Mean Squared Error 

(MSE) between the predicted output and the actual output by adjusting the parameters. MSE is 

a commonly used loss function, particularly suitable for regression problems. It measures the 

difference between the model’s predicted values and the actual values. By minimizing MSE, 

the model can better fit the training data, thereby improving its performance. 

A sparse network is trained using the previously described random sample pair generation 

method, with a learning rate of 1e-3 using the Adam Optimizer and the Cross Entropy Loss 

Function. To preserve the unsupervised features extracted by the autoencoder, the parameters 
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of the encoder module are kept fixed. Finally, a simple logic is used to classify the features. 

4.2 Ablation Analysis   

3D Autoencoder and the proposed method in the paper: The proposed method enhances the 

unsupervised features extracted by the autoencoder using the ECA (Efficient Channel Attention) 

Mechanism, and then combines them with the Supervised Features extracted by the Siamese 

network. Unlike other approaches that transmit Hyperspectral Image samples to two different 

networks to separately create unsupervised and Supervised Features and then fuse them, this 

paper enhances the extracted unsupervised features through ECA attention feature training, and 

then selects the Supervised Features extracted from the adjacent Siamese network to correct the 

unsupervised features, in order to improve the modifiability of the features. This part is 

completed by the module. To validate the improvements of the method proposed in the paper 

over 3D Autoencoder, both 3D Autoencoder and the proposed method were tested, as shown 

in Table 4. 

Table 4 Performance comparison of the proposed method and 3D Autoencoder on two datasets   

Dataset Method  OA（%） Kappa（%） 

PaviaU Dataset 
3D Autoencoder 79 75 

The method 81 77 

Salinas Dataset 
3D Autoencoder 86 82 

The method 90 86 

As shown in the data table, the proposed method in the paper achieves a 3-percentage-point 

improvement in Overall Accuracy and a 2-percentage-point improvement in Kappa over 3D 

Autoencoder on the PaviaU Dataset. On the Salinas Dataset, it achieves a 4-percentage-point 

improvement in Overall Accuracy and a 4-percentage-point improvement in Kappa. This 

demonstrates that the proposed method, which integrates the Siamese network and Efficient 

Channel Attention mechanism, effectively addresses the shortcomings in unsupervised features 

and correction modules.   

4.3 Comparative Experiments   

This paper selects SAE-LR (Stacked Autoencoder with Logistic Regression)[43], Two-
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CNN[44], 3DCAE (3D Convolutional Autoencoder)[45], and the graph convolutional network 

GCN (Graph Convolutional Network)[46] for comparison.  

SAE-LR (Stacked Autoencoder with Logistic Regression) is an autoencoder composed of a 

Fully Connected Layer network. Before classification, it preprocesses the original spectral and 

spatial vectors using the PCA (Principal Component Analysis) Technique, and fuses them into 

a joint spectral-spatial vector. The parameters of the Encoder and decoder modules in this 

method are bundled together. Two-CNN is a dual-branch model that separately extracts 

Spectral Features and Spatial Features, and then fuses them. To perform well with limited 

training samples, this method uses Transfer Learning to pre-train the model, transferring 

knowledge from the source data to the target dataset. 3DCAE (3D Convolutional Autoencoder) 

is a 3D CNN autoencoder trained using a large number of unlabeled samples, and then classifies 

the extracted features using a Support Vector Machine. Since graph data has stronger 

representation capabilities than grid data, GCN (Graph Convolutional Network) is introduced 

for Hyperspectral image classification. During training, the graph data includes both labeled 

and unlabeled nodes. It leverages both labeled and unlabeled information, making it a Semi-

supervised method.   

The above methods are evaluated on the PaviaU Dataset, with Overall Accuracy and Kappa 

selected as references for classification accuracy.   

Table 5 Performance of different methods on the PaviaU Dataset   

 SAE-LR Two-CNN 3DCAE GCN 
Proposed 

Method  

OA(%) 72.4% 76.05% 72.35% 64.36% 82.3% 

Kappa 0.54 0.69 0.52 0.65 0.74 

The experimental results show that the proposed method outperforms the other four methods in 

both metrics. SAE-LR (Stacked Autoencoder with Logistic Regression) and 3DCAE (3D 

Convolutional Autoencoder) are both models based on Encoder, with the difference being that 

the former is a fully connected network while the latter is a 3-D convolutional network. Their 

poor performance on the PaviaU Dataset demonstrates that relying solely on Encoder to obtain 

unsupervised features without further refinement makes it difficult to improve classification 
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accuracy. This also validates the effectiveness of enhancing Feature Extraction using the 

Siamese network and ECA (Efficient Channel Attention) Mechanism as proposed in this paper. 

The performance of GCN (Graph Convolutional Network) depends on the meticulous 

construction of graphs and node features; poor graph construction and simplistic node feature 

generation can reduce classification accuracy. 

The above methods were evaluated on the Salinas Dataset, using Overall Accuracy and Kappa 

as classification accuracy metrics. 

Table 6 Performance of different methods on the Salinas Dataset 

 SAE-LR Two-CNN 3DCAE GCN 
Proposed 

Method  

OA(%) 68.2% 81.25% 75.72% 86.2% 87.4% 

Kappa 0.58 0.71 0.70 0.79 0.82 

The experimental results show that, unlike the PaviaU Dataset, all models exhibit significant 

improvements in both Overall Accuracy and Kappa on the Salinas Dataset. This can be 

attributed to the regular distribution of ground objects in the Salinas Dataset, which facilitates 

classification. Compared to the SAE-LR (Stacked Autoencoder with Logistic Regression) and 

3DCAE (3D Convolutional Autoencoder) methods, the proposed method shows a clear 

improvement, further proving the effectiveness of using the Siamese network and ECA 

(Efficient Channel Attention) Mechanism to refine and enhance unsupervised features. 

Overall, the proposed model demonstrates certain advantages over the other four methods in 

terms of Overall Accuracy and Kappa Coefficient on both the PaviaU and Salinas Dataset.   

5 Conclusion   

The main work of this study is the construction of a Semi-supervised Learning Model for 

Hyperspectral image classification. The model consists of an autoencoder, an Attention Layer, 

and a Siamese network. The autoencoder is trained on a large amount of unlabeled data to learn 

unsupervised features of the samples. These unsupervised features are then enhanced through 

the Attention Layer to form enhanced features. Subsequently, the Siamese network is trained 

using a small amount of labeled data and randomly generated sample pairs to learn supervised 
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features of the samples. The enhanced features are then input into the trained Siamese network, 

where they are refined using the supervised features to produce corrected features. Finally, the 

corrected features and enhanced features are fused via skip connections to form the final latent 

features of the samples. These final latent features, along with the HSI samples, are input into 

a logistic Classifier for classification to obtain the final results. As a Semi-supervised Learning 

Model, the model leverages a large number of unlabeled samples and a small number of labeled 

samples, effectively addressing the high labeling cost issue in Hyperspectral image 

classification. 

1) The unsupervised features extracted by the 3D Autoencoder are input into the Attention 

Layer for feature enhancement. The enhanced features are then input into the Siamese network, 

where they are refined using the supervised features learned by the Siamese network. A random 

sample pair generation method is used to construct input sample pairs for the Siamese network, 

reducing the reliance on labeled samples. 

2) Another major contribution of this study is the validation of the effectiveness of adding the 

Attention Layer and Siamese network on top of the autoencoder for feature enhancement and 

correction through ablation experiments. The proposed Semi-supervised Learning Model is 

applied to two benchmark hyperspectral image datasets, the PaviaU Dataset and the Salinas 

Dataset, achieving an Overall Accuracy and Kappa Coefficient of 82.3%, 0.74 and 87.4%, 0.82 

respectively, demonstrating the effectiveness of the proposed model. 
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