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Abstract. Early diagnosis of breast cancer is crucial for improving patient survival 

rates, but traditional pathological diagnosis heavily relies on subjective clinical 

experience, suffering from inefficiency and poor consistency. This paper proposes 

an improved VGG network model integrating multi-scale features and attention 

mechanisms for automated classification of breast cancer histopathological images. 

The model introduces a mixed-domain attention mechanism into the VGG16 

backbone, enabling dynamic focus on critical pathological feature regions such as 

nuclear atypia. Simultaneously, it incorporates a dual-scale dilated convolution 

module to parallelly extract local details and global contextual information, 

enhancing multi-scale feature representation. Experimental results demonstrate that 

AMSD_VGGNet achieves classification accuracies of 99.71% on both BreakHis 

and ICIAR2018 datasets, with only 12.8% of VGG16's parameter count. Heatmap 

visualization indicates that its decision logic aligns closely with pathological 

standards. Furthermore, an interactive system interface developed using PySide6 

framework supports high-resolution image loading and real-time classification 

response, providing an efficient and reliable intelligent auxiliary diagnostic tool for 

early breast cancer screening. 
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1. Introduction 

Breast cancer has been identified as a major malignant disease that severely threatens human 

health, and its prevention and control are now facing new challenges. The latest epidemiological 

data from the International Agency for Research on Cancer (IARC) shows that the number of 

confirmed breast cancer cases worldwide in 2024 is expected to exceed 2.46 million, an increase 

of approximately 14% compared to 2020, maintaining its position as the most common 

malignancy among women.  

Pathological images serve as crucial evidence for medical diagnosis, and the development of 

computer-aided analysis systems for these images faces dual characteristics: on one hand, there 

are numerous technical bottlenecks, while on the other, they hold significant medical 

application prospects. In response to these challenges, the research community has proposed 

various innovative solutions. Literature [1-3] systematically compares optimization strategies 

for different algorithms, including improvements in feature engineering and innovations in 

model architecture. These studies provide important technical references for pathological image 

analysis. Currently, automated classification and recognition methods for breast cancer medical 

pathological images can be broadly divided into two categories: traditional machine learning 

methods and deep learning methods.In the field of breast pathological image analysis, 

traditional machine learning methods typically adopt a two-stage processing pipeline. First, 

manually designed feature extraction algorithms are applied to the images, with commonly used 

methods including texture feature extraction techniques such as Local Binary Pattern (LBP), 

Histogram of Oriented Gradients (HOG), and morphological-based regional feature analysis. 

These methods transform high-dimensional image data into representative feature 

vectors.Subsequently, various classical machine learning algorithms are employed to construct 

classification models. Support Vector Machines (SVM) achieve sample differentiation by 

identifying the optimal classification hyperplane; the Random Forest (RF) algorithm integrates 

prediction results from multiple decision trees; and the K-Nearest Neighbors (KNN) classifier 

determines categories based on distance metrics between samples. These algorithms each have 

unique characteristics and can achieve certain classification effects under specific 

conditions.Spanhol et al. combined features such as Local Binary Pattern, Complete Local 

Binary Pattern (CLBP), Local Phase Quantization (LPQ), Gray-Level Co-occurrence Matrix 

(GLCM), ORB (Oriented FAST and Rotated BRIEF), and Parameter-Free Threshold 

Adjacency Statistics (PFTAS) with classifiers (e.g., SVM, RF, Quadratic Discriminant Analysis 

(QDA), and nearest-neighbor classifiers) for benign and malignant classification of breast 

pathological images, achieving an accuracy of 80% to 85% on the BreakHis dataset [4]. Gupta 
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et al. proposed a method that fuses features such as wavelet features, opponent color local binary 

patterns, color, and texture, creating a heterogeneous ensemble classifier using a voting 

mechanism for classification [5]. Shukla et al. utilized morphological features for automatic 

detection and classification of breast pathological images, employing histogram equalization to 

improve local image contrast and comparing various classifiers (e.g., RF, Rotation Forest, SMO, 

Naïve Bayes, J-Rip, and PART decision trees) [6]. Kahya et al. proposed an adaptive sparse 

support vector model based on discriminative features, assigning weights to features using 

adaptive L1 norm and selecting high-accuracy informative features, achieving a prediction 

accuracy of 94.97% in the binary classification task on the BreakHis 40× dataset [7]. Bardon et 

al. used the Bag-of-Words model and Locality-constrained Linear Coding to extract 

handcrafted features, employing an SVM classifier to complete pathological image 

classification [8]. 

This study enhances breast cancer histopathology image classification by optimizing data 

preprocessing and network architecture. It introduces a multi-scale sliding window strategy 

with standardized processing to expand patch diversity and reduce staining variability, 

improving training stability. The model integrates attention mechanisms and dilated 

convolutions into VGG16 to boost multi-scale feature extraction and discriminative 

representation of tissue/cellular structures. The framework aims to achieve higher accuracy and 

F1 scores on public datasets with efficient parameter usage, while leveraging visualization 

techniques to interpret model focus areas. An interactive analysis system is also developed to 

support clinical decision-making. 

2. Related Work  

2.1 Dilated Convolution 

Dilated Convolution, proposed by Yu et al. [9], aims to expand the network's receptive field 

without increasing computational load or altering feature map dimensions. The receptive field 

refers to the mapped region of the output feature map in the original image. 

This is achieved by inserting holes (zeros) into the convolutional kernel and introducing a 

hyperparameter—dilation rate (r), which defines the spacing between kernel elements. When 

r=1, dilated convolution reduces to standard convolution. As rincreases, the kernel's receptive 

field expands, as shown in Figure 1 (illustrating receptive field changes for r=1, 2, 3). 
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Figure 1 Receptive Fields Under Different Dilation Rates. 

2.2 CBAM Attention Module 

Woo et al. [10] proposed the CBAM attention module, which combines CAM and SAM to 

adaptively select and weight important information in input feature maps. CBAM is illustrated 

in Figure 2. 

 

Figure 2 CBAM Attention Module. 

The channel attention mechanism models global interdependencies across channels, 

dynamically adjusting their weights to enhance key features. It uses a dual-pooling branch and 

shared MLP architecture: global average pooling extracts spatial statistics, while max pooling 

captures salient activations. These features are fed into a shared-weight MLP for nonlinear 

transformation, generating channel attention weights. The learned weights are multiplied 

channel-wise with the original features for recalibration. This design preserves global context 

while highlighting local features, improving discriminative feature extraction in tasks like 

image classification. 
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3. Results  

3.1. Model Structure Design 

The proposed Attention Multi-Scale Dilated VGG Network (AMSD-VGGNet) is an improved 

network structure based on the classical VGG16 deep convolutional neural network. It 

integrates the hybrid-domain attention mechanism (CBAM) and a multi-scale dilated 

convolution module to enhance multi-scale feature extraction and recognition capabilities for 

medical images. The model retains the first ten convolutional layers and the first four pooling 

layers of VGG16. CBAM attention modules are introduced before and after these layers to 

strengthen the focus on critical features. Additionally, a dual-scale dilated convolution module 

is incorporated at the high-level semantic feature extraction stage to improve the model’s ability 

to recognize lesion regions of varying sizes and morphologies. 

The network structure enhances the model’s response to effective regions through attention 

mechanisms, extracts deep features via multi-scale dilated convolutions, and performs feature 

fusion and fully connected classification at the output. The overall structure balances depth, 

breadth, and multi-scale expressiveness in feature extraction, meeting the high-precision 

requirements of medical image analysis. The complete structure is illustrated in Figure 3. 

 

Figure 3 Improved VGG Network Structure Diagram. 

3.3. Datasets and Data Processing 

The BreakHis[10] dataset 1212(2016) contains 7,909 breast cancer histopathology images 

across four magnifications (40×, 100×, 200×, 400×), classified into benign (4 subtypes) and 

malignant (4 subtypes) categories. Example images at different magnifications are shown in 

Figure 4. The BACH Challenge dataset 2828 (ICIAR2018) includes 400 H&E-stained images 

annotated into four diagnostic classes, with samples illustrated in Figure 5. Both datasets face 

challenges such as limited data volume and staining/imaging variability. 
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Figure 4 BreakHis Dataset Samples at Different Magnifications [6]: (a) 40×; (b) 100×; (c) 200×; (d) 

400×. 

 

Figure 5 ICIAR2018 Dataset Samples. 

To address these, data augmentation was applied: 

 BreakHis images (700×460) were split into two 460×460 patches per image, expanding the 

dataset to 15,818 patches. 

 ICIAR2018[11] images (2048×1536) used multi-scale sliding windows (460×460 to 

1024×1024) followed by resizing, generating 24,818 total patches. 

Color normalization(demonstrated in Figures 6 and 7) standardized staining variations by 

aligning pixel-wise mean and standard deviation across datasets. After normalization, images 

were resized to 224×224 (VGG input standard) and converted to Tensor format for PyTorch 

compatibility. These steps reduced non-critical interference (e.g., staining inconsistencies), 

preserved pathological features, and improved model convergence and training stability. 
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Figures 6 BreakHis Dataset Differentiated Sampling. 

 

Figures 7 ICIAR2018 BACH Dataset Differentiated Sampling. 

3.4 Experimental Environment 

The experiments were performed on a high-performance computing system equipped with an 

Intel Core i7-13620H processor (14 cores, 20 threads), 16GB RAM, and an NVIDIA RTX 4060 

Laptop GPU (8GB VRAM with CUDA acceleration) to accelerate deep neural network training. 

The software stack included PyTorch 2.0 as the core deep learning framework, supported by 

OpenCV and Pillow for image processing tasks, and torchvision for data augmentation 

operations, ensuring compatibility and efficiency throughout the training pipeline. 

3.5 Model Evaluation Criteria 

Accuracy, Precision, Recall, F1 score, ROC curve, PR curve, and confusion matrix are used in 

this study for comprehensive comparison. Accuracy is a commonly used metric for 

classification models, indicating the proportion of samples correctly classified by the model on 

the entire dataset, and its calculation formula is shown in Equation 1: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1) 

In the formula, TP (True Positive) indicates the number of positive class samples correctly 

identified by the model, and TN (True Negative) indicates the number of negative class samples 

correctly identified; FP (False Positive) is the number of negative class samples misclassified 
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as positive, and FN (False Negative) is the number of positive class samples misclassified as 

negative. The ratio between TP and TN reflect the model's classification accuracy on positive 

and negative class samples, while FP and FN reflect the model's misclassification. 

Precision is used to measure the proportion of samples predicted to be positive classes that 

actually belong to positive classes by the model, reflecting the accuracy of the model in the 

prediction of positive classes. Its calculation formula is shown in Equation 2: 

Precision=
TP

TP+FP
(2) 

Recall measures the proportion of all samples that are actually in the positive class that are 

correctly recognized as positive by the model, reflecting the model's ability to recognize 

samples in the positive class. The formula for Recall is shown in Equation 3: 

Recall =
TP

TP + FN
(3) 

The F1 value is the reconciled average of precision and recall, which integrally reflects the 

prediction accuracy of the classification model and its ability to recognize actual positive 

examples. Precision evaluates the proportion of correctness in the prediction results, while 

recall measures the model's effectiveness in recognizing positive examples. The F1 value is 

particularly suitable for dealing with classification problems in unbalanced datasets. Its 

calculation formula is shown in Equation 4: 

F1 =
2 × Recall × Precision

Recall + Precision
(4) 

The vertical coordinate of the ROC curve denotes the True Positive Rate (TPR) and the 

horizontal coordinate denotes the False Positive Rate (FPR), which is used to evaluate the 

model's ability to discriminate between positive and negative samples under different decision 

thresholds. Its calculation formula is shown in 5, 6. 

TPR =
TP

TP + FN
(5) 

FPR =
FP

TN + FN
(6) 

The vertical coordinate of the PR curve is Precision and the horizontal coordinate is Recall, 

which is used to measure the model's recognition precision and coverage of positive case 

samples. Its definition formula is shown in 7, 8. 

Precision =
TP

TP + FP
(7) 
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Recall =
TP

TP + FN
(8) 

3.6 Experimental Design 

Five baseline models were selected for comparison: VGG16, ResNet50, DenseNet121, 

MobileNetV3, and ConvNeXt. The experimental setup ensured uniform data splits 

(train/validation/test) and preprocessing across all models. Key hyperparameters included a 

learning rate of 0.0001, batch size of 32, and 10 training epochs. Transfer learning was applied: 

baseline models utilized pretrained weights, while AMSD-VGGNet initialized with VGG16 

weights. Performance was evaluated using accuracy, precision, recall, F1 score, ROC/PR 

curves, and confusion matrices. 

Table 2 Hyperparameters for Baseline Models 

Parameter Value 

lr 0.0001 

batch_size 32 

epoch 10 

Input size [224,224] 

3.7 Experimental Results 

All models trained with identical hyperparameters. After completing the model training, we 

systematically compared the performance of all models on an independent test set to evaluate 

their generalization ability in real-world scenarios. The experimental metrics included accuracy, 

F1 score, precision, recall, and model parameter count. The evaluation results are presented in 

Table 3. 

Table 3 Comparative experimental results 

Model accuracy F1 precision recall Params 

AMSD_VGGNet 0.9971 0.9971 0.9972 0.9971 17.15M 

VGGNet 0.9971 0.9971 0.9972 0.9971 134.27M 

MobileNetV3 0.9886 0.9886 0.9886 0.9886 4.20M 

DenseNet121 0.8606 0.8594 0.8603 0.8606 7.98M 

ResNet50 0.8663 0.8668 0.8683 0.8663 23.51M 

ConvNext 0.8989 0.8985 0.8986 0.8989 27.81M 
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The proposed AMSD_VGGNet achieves near-identical performance to VGG16, with metrics 

(Accuracy, F1, Precision, Recall) ranging from 0.9971 to 0.9972, while reducing parameters to 

17.15M (12.8% of VGG16’s 134.27M), enhancing deployability on resource-limited devices. 

MobileNetV3, as a lightweight alternative, attains 0.9886 across metrics with only 4.20M 

parameters, balancing efficiency and performance. In contrast, DenseNet121, ResNet50, and 

ConvNeXt underperform (Accuracy: 0.86–0.90) despite varying parameter counts (7.98M–

27.81M). The confusion matrix for AMSD_VGGNet (Figure 3-28) demonstrates exceptional 

robustness, with >99.7% diagonal predictions and minimal misclassifications, confirming its 

capability in fine-grained feature recognition. 

4. Discussion 

The proposed AMSD_VGGNet effectively balances lightweight design and high accuracy 

(0.9971) in breast cancer histopathology classification, reducing parameters to 17.15M (12.8% 

of VGG16) through multi-scale dilated convolutions (dilation rates: 1 and 3) and CBAM 

attention mechanisms. These components synergistically capture cellular/tissue-level features 

while suppressing staining artifacts and noise. Heatmaps confirm alignment with pathological 

standards, enhancing clinical trust. 

Limitations and Future Directions: 

 Data Constraints: Limited dataset size and image quality variations may hinder generalization. 

Future work should expand datasets with diverse subtypes and staining conditions. 

 Clinical Validation: Lack of real-world testing necessitates multi-center trials to assess 

robustness in clinical settings. 

 System Integration: Current tools lack deep collaboration with physician expertise. 

Developing human-AI collaborative frameworks could improve clinical adaptability by 

merging model outputs with pathologist insights. 

5. Conclusion 

This study proposes an improved VGG network model (AMSD_VGGNet) for breast cancer 

histopathology image classification, systematically validating its efficiency and reliability. Key 

conclusions are as follows: 

（1） Lightweight Design and Performance Balance 



International Journal of Advanced AI Applications 

 

AMSD_VGGNet reduces parameters by 87.2% (17.15M) compared to VGG16 through global 

average pooling, while maintaining a classification accuracy of 0.9971. It significantly 

outperforms lightweight models like MobileNetV3 (0.9886), achieving an optimal balance 

between precision and efficiency. 

（2） Validation of Innovative Structures 

The CBAM attention mechanism effectively focuses on critical pathological features such as 

nuclear atypia and disordered cell arrangements, suppressing non-diagnostic interference. 

The dual-scale dilated convolution module enhances joint recognition of cellular-level 

morphology and tissue-level structures through multi-scale feature fusion. 

（3） Experimental and Practical Value 

On the BreakHis and ICIAR2018 datasets, AMSD_VGGNet achieves core metrics (accuracy, 

F1 score, etc.) exceeding 0.9971, surpassing mainstream models like ResNet50 (0.8663) and 

ConvNeXt (0.8989). An interactive system developed using the PySide6 framework supports 

second-level inference and visualization of high-resolution images, providing an efficient tool 

for clinical auxiliary diagnosis. This study offers a high-precision, lightweight, and 

interpretable solution for medical image diagnosis. However, its clinical utility requires further 

validation through large-scale real-world data testing and system optimization. 
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