International Journal of Advanced Al Applications I J AM

Design of Serial Multi-Motor Communication
Programme Based on CAN Bus Master-Slave

Architecture

Wei Jia Xu!, Tao Zheng?™

!Geely University of China; China; xu18280141482@163.com
2*Geely University of China; China; 15884408147@163.com

Abstract. Motor control plays a crucial role in daily life, but challenges often arise
in terms of precise control and scalability. By modularizing motor control using a
CAN bus master-slave architecture and a built-in PID control servo system,
modular expansion allows for the selection of the number of motors to be controlled.
Through the host, each motor's state can be precisely controlled, improving the
control accuracy and scalability of multi-motor systems. This paper presents the
system architecture and code implementation of the serial multi-motor
Communication programme based on the CAN bus master-slave architecture,

which holds significant practical value in industrial machine applications.

CCS Concepts: Computer systems organization — Embedded and cyber-physical systems —

Sensor networks

Keywords: Communication protocol design; Serial communication mechanism,; Network

topology; Motor control system; CAN communication

1.Introduction

Against the broader backdrop of the intelligent transformation of the global manufacturing
industry and the accelerated advancement of “Industry 4.0,” the demand for multi-motor
cooperative control systems in strategic sectors such as high-end equipment manufacturing,
new energy vehicles, and intelligent robotics has experienced explosive growth[1-3]. By 2020,
the global installed base of industrial robots had exceeded 3 million units. The Asian region not

only exhibited the fastest growth but also accounted for the largest share, comprising 69% of

* Corresponding author: 115884408147@163.com



International Journal of Advanced Al Applications

the global installed capacity[4]. Traditional multi-motor control programmes predominantly
employ centralized PLC or dedicated controller architectures, which present bottlenecks
including complex wiring, high expansion costs, and weak anti-jamming capabilities. The core
challenge lies in achieving high-precision synchronization and dynamic coordination among
multiple motors. Moreover, traditional static IP bonding and star network architectures have
struggled to meet the demands of rapid deployment[5]. In recent years, fieldbus-based
distributed control technologies (e.g., CAN, Ether CAT) have enhanced system flexibility to
some extent; however, existing solutions still exhibit significant limitations in dynamic node

management, communication delay compensation, and fault self-healing capabilities[6, 7].

Based on existing research, the CAN bus master-slave architecture has gradually become the
mainstream approach for distributed control of multiple motors due to its high reliability, real-
time performance, and anti-interference capabilities [8]. In this paper, we propose a serial multi-
motor communication approach based on the CAN bus master-slave architecture, achieving
accurate and cooperative control of multiple motors through modular hardware design and a
master-slave communication protocol. Experimental results demonstrate that the system
exhibits excellent communication stability in both complex environments and strong
interference scenarios, providing a high-precision and highly scalable solution for industrial

robots, electric vehicle drives, and other applications.

2.0verall design of system

The serial multi-motor communication scheme based on the CAN bus master-slave architecture
consists of two parts: the host transmitter and the slave controller. The main advantages of this
scheme include modular cascade scalability, a master-slave control network for serial nodes,
and an automatic dynamic node coding protocol. The main advantages of the serial multi-motor
communication solution based on the CAN bus master-slave architecture include modular
cascade scalability, a serial node master-slave control network, and an automatic dynamic node
coding protocol. All slaves are isomorphic and modular, offering greater flexibility than static
IP bindings for individual nodes. Based on the CAN bus master-slave architecture, the host

sends data to the slave, which then receives the data and uses the PID control algorithm to



International Journal of Advanced Al Applications

achieve accurate servo speed control of the motor. The operator can select a slave and configure

its data through the master.

The control relationship between the master and slave is illustrated in Figure 1.

Motor 1 <::J Encoder 1

monitors

ﬂ ﬂ Control data
PWM1 <:|
L298N <:| STM32F103C8T5 STM32F103C8T6
Microcontroller CAN .
Motor lave) nicatl microcantroller
Controller <: PID servo system communication (H Ost]
PWM2 |::>
ﬂ ﬂ actual data
monitors

Motor 2 (::I Encoder 2

Figure 1. Master and slave control relationship diagram

3.CAN bus-based master-slave serial architecture design

In the serial multi-motor Communication programme based on the CAN bus master-slave
architecture, the design of the master-slave serial architecture and communication protocol is
crucial. A well-designed communication protocol ensures accurate and efficient information
exchange between the master and slaves, thereby enabling precise control of multiple motors.
Such a protocol not only fully leverages the technical advantages of the CAN bus but also meets
system requirements for dynamics, scalability, and reliability, thereby providing a solid

foundation for the stable operation of the entire multi-motor control system [8].

3.1. Technical characteristics of the CAN bus

The CAN bus exhibits high reliability, with robust anti-interference capabilities that resist
electromagnetic interference in industrial environments to ensure stable signal transmission. Its
error self-testing mechanism can promptly detect and correct transmission errors to guarantee
data accuracy. Additionally, the automatic fault node disengagement function effectively
isolates faulty nodes, preventing their impact on the operation of the entire system. Together,
these features ensure the stability of the CAN bus and the reliability of data transmission under
complex working conditions, providing a solid foundation for the precise control of multiple

motors [9, 10].



International Journal of Advanced Al Applications

3.2. Master-Slave String Architecture Design

The CAN bus supports a multi-master, multi-slave communication mode, making it ideal for
constructing a multi-motor cascade control system within a master-slave architecture. A system
can contain one or more masters and multiple slaves. Masters can flexibly communicate with

each slave to send control commands and receive status information [11-13].
3.2.1. Master-Slave Node Functional Classification
(1) Host Function

The host is equipped with a human-computer interaction interface, allowing the operator to
input control data. The host is responsible for parsing these commands, determining the target
slaves to be controlled, and specifying the motor operating parameters (which can be point-to-
point data frames or cluster packets). According to the operator’s commands, the host

accurately distributes the data to each slave.

The master periodically sends data requests to the slaves via the CAN bus in sequential order,
as shown in Figure 2. The slave receiving the data request responds with real-time motor status
data, such as speed, current, and temperature. The master stores and analyzes this data. The host
also stores and analyzes these data to monitor the motor’s operational status in real time,

ensuring the stable operation of the entire system.

Sequential periodic acquisition of slave data

Send remote control frame Send remote control frame Send remote control frame
request data request data request data
Slave N ssansnas Slave2 | | Slave1 | | Slave0 | | host
(max 88) - ] ]
Slave N feedback data to master Slave feeds data back to the master

Figure 2. The master acquires slave data in a sequential periodic manner

When the host detects abnormal data returned by a slave, it can promptly identify a potential
fault in the motor or the slave controller. The master then sends a stop command to the faulty
slave and simultaneously issues an alert to notify the operator for timely maintenance and

intervention.



International Journal of Advanced Al Applications

(2) Slave Function

The slave receives data from the host via the CAN bus, parses the content, and controls motor

operation accordingly.

The slave is connected to the motor encoder, current sensor, temperature sensor, and other
monitoring devices to collect real-time data on motor speed, current, temperature, and other
status parameters. This information is encoded using a predefined data format and transmitted

to the host via the CAN bus upon receiving a data request.

The slave also possesses basic local control capabilities. For instance, if the motor current or
temperature exceeds a predefined threshold, it immediately initiates protective actions,
including cutting off the motor's power supply, issuing an alarm, and transmitting overload or

fault information to the host to prevent damage to the motor or the slave unit.
3.2.2. Master-Slave Architecture Tandem Connection Design

Both the host and the slaves are equipped with the TJA1050 chip as the CAN bus transceiver
and are interconnected via the two signal lines (CAN_H and CAN_L) of the CAN bus. The
host’s CAN bus interface is connected to that of Slave 0. The slaves are connected in a daisy-
chain configuration, as shown in Figure 3: Slave 0 is connected to Slave 1, Slave 1 to Slave 2,
and so forth. This configuration facilitates easy expansion of slave nodes and enables cascade

control of multiple motors.

STM32 Microcontroller
(Host 88)
IP: 980

sesnen
STM32 Microcontroller
(Slave 1)
IP: 110

A £

S§TM32 Microcontroller
(Slave 0)
1P: 100

A

STM32 microcontroller
(Mainframe)

SPpUBWIWOD |0J3U0d pUdS

B}Eep )oeqpad} awil-|eay

Figure 3. Design of Serial Connections in Master-Slave Architecture

The host provides a stable power supply to the slaves, while each slave forwards power to the

subsequent slave through dedicated inter-slave power interfaces; this power delivery



International Journal of Advanced Al Applications

mechanism ensures that each slave receives sufficient current to meet the operational demands
of the motor, and, as the slaves do not carry onboard batteries, they can be miniaturized to save

space and enhance portability.

3.3. Dynamic Node Coding Protocol

To enable flexible system expansion and automatic identification of slave nodes—while
avoiding the inconvenience and potential errors associated with manual IP address
configuration [14], this paper proposes a dynamic node addressing protocol. The core of this
protocol is that, upon connection to the CAN bus, each slave is automatically assigned a unique

IP address by the host, enabling precise management and communication.
3.3.1. Principles of code assignment
(1) Principle of Uniqueness

In the CAN bus network, each slave node must be assigned a unique IP address to ensure that
the host can accurately identify and communicate with each slave. This requirement is
fundamental to the dynamic node addressing protocol and is enforced through a rigorous

address allocation and conflict detection mechanism.
(2) Principle of Continuity

To simplify management and improve address space utilization, IP addresses should be
allocated as continuously as possible. The host assigns addresses to slave nodes sequentially

based on their connection order, thereby minimizing address fragmentation and reducing waste.
3.3.2. Coding allocation process

When a slave node is powered on for the first time (i.e., without a stored IP address), it first
verifies the communication status of the CAN bus to ensure connectivity with the network. It
then checks its flash memory for an existing IP address. If none is found, it sends a dedicated
broadcast request frame to the host, requesting assignment of a unique IP address. The purpose
of this request is to notify the host that a new slave node has joined the network and to initiate
the dynamic IP assignment process. The format and content of the broadcast request frame must
conform to a predefined communication protocol, which includes the slave's unique hardware

identifier (UID) to ensure correct identification and processing by the host.



International Journal of Advanced Al Applications

The master continuously monitors communication on the CAN bus, and upon receiving a
broadcast request frame from a slave, it assigns an available IP address based on predefined
rules and the current number of slave nodes in the network. The master then generates a
response frame containing the assigned IP address and the slave’s unique hardware identifier
(UID), and broadcasts it over the CAN bus. Simultaneously, the master sends the same
information directly to the requesting slave for confirmation. The master also records the
assigned IP address and corresponding UID in its internal node management table to support

future communication and system maintenance.

Under normal conditions, all slaves in a serial network receive the response frame broadcast
from the host. However, slaves that have already been assigned an IP address or have received
an acknowledgement frame will disable their response frame reception channel, thereby
filtering out subsequent response frame broadcasts and ensuring that their I[P addresses are not
overwritten. Slaves that have not yet been assigned an IP address will process the broadcast
response frame by verifying whether the hardware identifier (UID) in the frame matches their
own, to confirm that the frame is intended for them. If the UID matches, the slave extracts the
assigned IP address from the frame and stores it in its internal Flash memory to ensure data

retention in the event of a power failure, and then disables its response frame reception channel.

onboard computer

Receive a response
frame from the host

Figure 4. Dynamic Node Encoding Process



International Journal of Advanced Al Applications

After storing the assigned IP address, the slave sends an acknowledgement frame to the host,
indicating successful receipt and storage of the IP address. At this stage, the dynamic IP address

assignment process for the slave is considered complete. This process is illustrated in Figure 4.
3.3.3. Power back up from the machine

In the event of an unexpected or intentional system power failure, upon the next power-up, the
slave reads its stored IP address from flash memory and sends its hardware identifier along with
this IP to the host. The host then compares this information against its node management table.
If the IP address in the node management table matches the one associated with the hardware
identifier, the host replies with a confirmation frame, allowing the slave to continue using the
current [P address. If the IP address is already assigned to another node or exceeds the allowable
range for the current network, the slave will be assigned a new IP address following the

predefined rules.

Slaves may also actively clear their stored IP addresses using hardware methods. This process

is illustrated in Figure 5.

Slave power
restoration

Detecting CAN
network status

IP detected in flash
memory

Send IP and
hardware identifier
to host

YES NO

Whether the host
acknowledgement frame is
received

Deleting IPs from
flash memory

Continue to use this IP

Storing new IP in
flash memory

¥

| Close the response frame receiving channel ‘

/ Send a response frame to the host /

Figure 5. Docking process for re-powering from the machine

3.3.4. Code Management and Troubleshooting

If a slave goes offline due to failure or human intervention, the host must detect this promptly.



International Journal of Advanced Al Applications

Two scenarios arise when a slave goes offline: (1) the slave fails independently, which does not
affect the overall operation of the master-slave tandem network; (2) the slave is taken offline
by human intervention, is completely damaged, or the connecting cable between slaves is
broken. In the latter cases, the master-slave tandem network is compromised, preventing all

subsequent slaves, including the affected one, from communicating with the master.

If the above situation (1) occurs, during the sequential periodic acquisition of slave data, the
faulty slave will fail to respond when the host requests data. The host will detect a reply timeout
and, upon confirming this, will identify the slave controller as faulty. Consequently, the host
will skip the faulty slave and simultaneously issue an alarm to notify the operator to perform

timely maintenance, as shown in Figure 6.

commencement

Send data request to the
next slave

Whether slave
data is received

Storage of data Slave reply timeout

, v

Conducting tail machine Skip this slave and
trouble-shooting enquiries sound an alarm

[ [

Whether the stop
command is received

Figure 6. Slave Individual Troubleshooting Process

If the above situation (2) occurs, to quickly determine whether the master-slave serial network
is damaged, the master will individually query the end slave during intervals between regular
data requests. If the network is damaged, the host will fail to receive a reply from the end slave.
After two unsuccessful fault query rounds, the host will terminate all slave tasks and initiate a
fault troubleshooting procedure. The host employs a dichotomous approach to fault query the
slaves sequentially to quickly identify the faulty slave and continuously alert the operator until

intervention. Once the fault is resolved and the operator presses the reset button, the host will



International Journal of Advanced Al Applications

recheck the master-slave serial network. If the network is restored, the host will notify the slaves

to resume their tasks, as shown in Figure 7.

Figure 7. Master-Slave Network Compromise Process

3.3.5. IP address conflict detection and resolution

Despite the principle of uniqueness and a strict allocation mechanism, IP address conflicts may
still arise in certain cases. These include when two or more slaves power up simultaneously,
causing errors due to the overlap of broadcast request frames, or when a slave’s memory failure

leads to loss of its IP address, resulting in a conflict upon re-requesting allocation.

When multiple slaves are powered on simultaneously, CAN bus arbitration relies on bit-by-bit
priority comparison of the identifier (IP), not the content of the data segment. As shown in
Figure 8. Since all slaves send the same IP in the broadcast request frame, the CAN bus cannot
distinguish priority via the arbitration mechanism. As a result, slaves will continue sending
request frames, and after the arbitration segment, they will send data segments. During
transmission, the slaves monitor the bus level through Bit Monitoring, comparing the
transmitted bit with the bus level in real time. If an inconsistency is detected in the data segment
(e.g., an implicit "1" is transmitted but an explicit "0" is received), the slave triggers a Bit Error,
halting transmission of the current frame and transmitting an error frame instead. All nodes on
the bus (including the host) will then listen to the error frame. The master will immediately stop

receiving data and discard the previously received information.



International Journal of Advanced Al Applications

Host Broadcast Response Frame IP Slave Broadcast Request Frame IP

Mainframe calls it
quits IP Host Alternate IP Host Alternate IP

Slave 0's IP

A

Slave 1's IP

Slave 88's IP

System Standby IP

IP priority: ‘001" 002003 ... 009 010011 ... 098099 100 101 ...109 110 111 ...119..7980 981 ... 989 990 ... 999

lowest priority

highest priority

Figure 8. CAN bus IP priority

Simultaneously, the newly accessed slave will attempt to send a request frame again. If it still

detects a bus level error, this indicates that multiple slaves have been accessed simultaneously.

At this point, all newly accessed slaves will send a special error frame to the host, which

contains the same identifier and identical data content (including the same CRC check value).

The host will treat the bus data as a single valid transmission, receive the message normally,

and continue to alert the operator upon detecting the special error frame until the operator

intervenes. Meanwhile, slaves that have not been assigned IPs will trigger a red-light alarm.

commencement

Slave sends its own
request frame to the host

'

Readback level error
detected

!

Send error frame

!

Uniform sending of special
error frames

!

Host detects special error
frame

!

Continuous alerts

close

Figure 9. IP Conflict Handling Process

Through the design and implementation of the aforementioned dynamic node coding protocol,

the serial multi-motor Communication programme based on the CAN bus master-slave

architecture can flexibly manage slave joining, leaving, and failures, ensuring each slave has a

unique [P address. This enables efficient and reliable communication and control. The dynamic

coding method enhances the system’s scalability and maintainability, providing a solid

foundation for the cooperative control of multiple motors, as shown in Figure 9.



International Journal of Advanced Al Applications

3.4. Communication protocol design

The IP address assignment protocol is illustrated in Figure 10.

host Slave 0 Slave 1 Slave 88
No IP number IP: 100 IP: 110 IP: 980
Routinely sends IP: 100~990 feedback IP feedback IP feedback IP
the IP number: (Interval 10) 101~109 111~119 981~989
. d cessation IP: 001
mergency sen standby IP: IP: 010 IP: 011 IP: 098
IP number: 002~009
Receive the IP: 100 IP: 110 IP: 980
P ber: Receive all IPs host host host
number: Emergency IP Emergency IP Emergency IP

Figure 10. Communication Protocol I[P Number Assignment Table

3.4.1. Host Send Protocol
The host’s regular send IP addresses range from 100 to 980 (assigned to slaves), while
emergency send IPs range from 001 to 009 and serve special purposes. Regular send IPs are
used for point-to-point communication, whereas emergency send IPs are broadcast to all slaves.
When the host sends data using a regular IP, slaves receive only the data corresponding to their
assigned IP and perform the appropriate operations.
The host transmits two frame formats: data frames and remote-control frames. Both use the
standard CAN bus frame format, which includes arbitration, control, data, CRC, and ACK
segments.
The master sends three types of frame combinations:

1. regular send IP with data frame, for normal data transmission to a single slave.

2. regular send IP with remote control frame, for sending data requests to slaves.

3. emergency send IP with data frame, for broadcasting emergency commands to all slaves.
3.4.2. Slave Receive and Response Protocol

The slave continuously monitors the data flow on the bus via the CAN bus interface. When the
host sends a receivable frame, the slave first checks the frame type. If it is a data frame, the
slave receives and processes the data regardless of whether the host IP is a regular send IP or

an emergency send IP. This is because the underlying control logic of the slave remains

consistent regardless of the network layer protocol used. If the frame is a control frame, the



International Journal of Advanced Al Applications

slave encodes the motor’s real-time status information—such as rotational speed, current, and
temperature—according to a preset data format and transmits this feedback to the host via the

CAN bus.

Upon receiving control data from the master and completing data verification, the slave

immediately adjusts the motor’s operating status based on the data content.
3.4.3. Slave Request and Feedback Protocol

The slave proactively sends data in the following scenarios: during power-up when requesting
an IP address, upon receiving a data request from the host, in case of slave failure, motor

overload, overheating, and other related conditions.

When first powered on, the slave sends a broadcast request frame with IP 099. Upon receiving
this frame, the host reads the hardware identifier and records it in the node management table,
then assigns an IP address to the slave based on the current number of slaves in the network. If
multiple devices power up simultaneously, they send a special error frame with IP 099

containing identical data to the host.

The slave’s transmit IPs correspond to the last nine digits of its own IP address, ranging from
xx1 to xx9. Additionally, the slave has an emergency transmit IP, which delivers information—
primarily fault data—to the host with higher priority. This emergency transmit IP is calculated
by dividing the slave’s own IP address by 10. For example, if the slave’s IP is 660, its transmit

IPs range from 661 to 669, and its emergency transmit IP is 066.
3.4.4. Host broadcast Communication protocol

When the host uses emergency send IPs, it broadcasts messages to all slaves. IP 001 is used to
send a stop broadcast command to all slaves and motors, instructing them to immediately halt
operations—such as in cases of master-slave serial network failure or emergency stops. IP 002
is used to broadcast a response frame; all slaves in the serial network receive this frame, and if
the response matches, the slave extracts the IP address from the frame and stores it in internal
flash memory. IPs 003 to 009 serve as alternate IPs, which can be customized by the operator—

for example, IP 003 may represent a full-speed motor rotation command.



International Journal of Advanced Al Applications

4.Computer programming

The program is developed in C, using Keil uVision5 as the design software. The flowchart of

the main program is as follows.

4.1. Host computer program
(1) Initialization Phase

Configure the system clock, CAN bus baud rate (500 kbps), GPIO ports (key/display interface),
and other settings according to system requirements.

(2) Master Loop Logic

Upon receiving slave messages, process them according to the preset programme. When data
transmission is required, read the user-entered parameter settings and motor selection, construct
CAN data frames, and send them. Periodically send status query requests to the slaves, parse
the feedback, and update the interactive interface display. In case of faults, perform fault
detection and emergency handling, such as timeout retransmission or node failure management.

The main flow of the host is illustrated in Figure 11.

Mainframe power-up

hardware initialisation

Whether the
message is received
or not

NO YES

Whether
data needs
to be sent

Processed in accordance
with pre-established
programmes

Send data to slave

Send data request to slave
Receive slave packets

NO

Detecting CAN bus
communication status

The program is
initialised

Whether or
not a shutdown command
is received

YES

Send a stop command
to the slave
end of programme

Figure 11. Host Main Flowchart

4.2. Slave programme
(1) Initialization Stage
Read the IP address stored in Flash memory (applicable when powering up in IP application

mode for the first time). Configure the TIM timer for PWM output at a frequency of 20 kHz,

set up ADC sampling, and initialize the encoder.



International Journal of Advanced Al Applications

(2) Main Loop Logic

Receive incoming data and determine whether it is a data frame or a remote-control frame. If it
is a data frame, read the frame data, update the target value, and control the motor using a PID
algorithm. If it is a remote-control frame, package the most recent motor data and send it to the
host computer. Subsequently, monitor the motor and collect data. The main flow of the slave is

illustrated in Figure 12.

onboard computer

STM32 kernel processor
initialisation

:

Detecting CAN bus

communication status

Updating the
target value

Send request
frame to host

Send packet to host

Motor control via PID
algorithm

,

Receive your own IP

The program is Monitoring of motor
initialised status

Whether or not
a shutdown command

end of programme

Figure 12. Slave Master Flowchart

5.Practical validation of the programme

5.1. Theoretical basis for selection of experimental hardware

STM32F103C8T6 and TJA1050 were chosen as the communication carriers for this experiment.
The STM32F103C8T6 offers powerful processing capabilities and low-power design, making
it ideal for multi-motor control systems that require long-term, stable operation. Its built-in low-
noise design, combined with the differential transmission technology of the CAN bus,
effectively mitigates electromagnetic interference in industrial environments. The TJA1050, a
transceiver designed specifically for CAN bus communication, uses differential signal
transmission to resist common-mode interference. It features a wide operating voltage range
and robust fault detection and self-recovery functions, ensuring stable data transmission in

harsh environments.



International Journal of Advanced Al Applications

5.2. Experimental environment setup

The experimental setup consists of a PC-based computer, four STM32F103C8T6 minimum
system boards, four TIA1050 communication modules, a DAP downloader, four red LEDs, and
several buttons. In this setup, three slaves and one master were powered through the DAP

downloader, as illustrated in Figure 13.

Figure 13. Physical drawing of system construction

5.3. Communication Configuration

The basic CAN communication configuration parameters are listed in Table 1 and Table 2.

Table 1. Basic configuration parameters for CAN communication

Dataset baud APBI1 BRP TS1 TS2 SJW inaccuracy
host 500kbps 36MHz 4 5 2 1 <0.33%
Slave 500kbps 36MHz 4 5 2 1 <0.33%

Table 2. CAN communication mode selection

Dataset | Bit Width Setting Filter Settings Mode Setting Related Settings
host 16-bit wide all pass state Masking Mode FIFOO
Slave 16-bit wide List Status list mode FIFOO0

5.4. Programme validation

In the experimental validation, we will assess the performance of the CAN bus-based serial
multi-motor Communication programme from several perspectives. The effectiveness of the
coding programme is crucial to ensuring error-free communication between the master and
slave, as well as accurate identification and assignment of IP addresses. We will evaluate the
accuracy and real-time performance of data transmission to ensure efficient and stable
communication during simultaneous multi-motor operation. Additionally, we will test the
troubleshooting solutions, including how to address equipment or network faults promptly to

ensure system reliability and stability.



International Journal of Advanced Al Applications
5.4.1. Coding programme validation

The slaves were sequentially connected to the CAN bus network: first, the initial slave was
connected as shown in Figure 14; then the second slave was powered on without network
connection as shown in Figure 15; finally, the second slave was connected to the network as

shown in Figure 16.

receive IP:110 s
Speedl :
Sp::"ill

Figure 16. Access to the second slave and to the CAN bus
5.4.2. Transmission Data Validation

Data is sent to the slave via the master to verify whether the slave receives both positive and

negative data, as shown in Figure 17.



International Journal of Advanced Al Applications

Figure 17. Master transfers data to three slaves
5.4.3. Troubleshooting programme validation

The first slave was actively disconnected from the CAN bus, and alerts were observed from the

red LEDs of both the master and the slave, as shown in Figure 18.

Figure 18. Disconnection of the first slave from the CAN bus network phenomenon

The host was actively disconnected from the CAN bus, triggering alarms from the red LEDs of
both the host and all slaves. The host screen displayed the messages "Network disconnection"

and "Error IP: 100," as shown in Figure 19.

Figure 19. Bus Disconnect Phenomenon

Experimental verification shows that the serial multi-motor Communication programme based
on the CAN bus master-slave architecture ensures reliable communication during operation and

can promptly and effectively issue alarms according to the preset programme in case of failure.

6.Conclusion

This paper proposes a serial multi-motor Communication programme based on the CAN bus



International Journal of Advanced Al Applications

master-slave architecture to address poor scalability and insufficient dynamic response in multi-
motor cooperative control. Through modular hardware design, a dynamic node coding protocol,
and a master-slave communication protocol, the system achieves flexible expansion and high-
precision control of multi-motor systems. The master-slave architecture, supported by the
dynamic node coding protocol, enables modular cascading of slaves, allowing the system to
flexibly add or remove motor nodes as needed without manual IP address configuration,
significantly improving deployment efficiency and scalability. Utilizing the CAN bus
differential transmission and error self-test mechanism, combined with the host’s periodic
polling and PID closed-loop control algorithm, the system achieves precise control of multiple
motors with minimal synchronization error, satisfying the demands of complex load scenarios.
The system incorporates multiple fault-tolerant mechanisms, including automatic detachment
of faulty nodes, dichotomous fault checking, and emergency broadcast instructions, enabling it
to maintain core functions when individual nodes fail or the network is disrupted, thus ensuring
system reliability in industrial applications. Additionally, the system can sustain core functions
despite hardware damage. At the hardware level, the design is based on the STM32F103C8T6
and TJA1050 chips, delivering low power consumption and high real-time performance. At the
software level, the slave driver communication protocol and dynamic IP allocation via Flash

memory guarantee rapid system reconfiguration capabilities.

This programme has limitations in handling simultaneous access by multiple motors and
depends on the response speed of individual slave fault checks. In the future, we aim to further
optimize the conflict detection efficiency of the dynamic coding protocol and explore
deterministic scheduling strategies based on time-triggered CAN (TTCAN) to meet more
stringent industrial timing requirements. This research provides a cost-effective technical
reference for distributed multi-motor control systems and holds broad engineering application

prospects.

References

[1] R. Bader, A. Ali, and N. M. Mirza, "Ai and robotics leading industry 4.0," in 2022 9th
International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), 2022: IEEE, pp. 1-4.

[2] Y. Zhang, B. Lu, and J. Chen, "The intelligent transformation path of Cultural Industrial
Parks under science and technology empowerment," in 2021 International Conference on



International Journal of Advanced Al Applications

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Culture-oriented Science & Technology (ICCST), 2021: IEEE, pp. 124-128.

P. S. Kholiya, A. Kapoor, M. Rana, and M. Bhushan, "Intelligent process automation: The
future of digital transformation," in 2021 10th International Conference on System
Modeling & Advancement in Research Trends (SMART), 2021: IEEE, pp. 185-190.

P. Sadhu et al., "Smart Industrial Machine Management and Control System Based on
IoT," in 2024 IEEE International Conference on Artificial Intelligence in Engineering and
Technology (IICAIET), 2024: IEEE, pp. 471-476.

S. Fu, H. Ren, T. Lin, S. Zhou, Q. Chen, and Z. Li, "SM-PI control strategy of electric
motor-pump for pure electric construction machinery," IEEE Access, vol. 8, pp. 100241-
100250, 2020.

W. Ryu, "Implementation of dynamic node management in Hadoop cluster," in 2018
International Conference on Electronics, Information, and Communication (ICEIC), 2018:
IEEE, pp. 1-2.

A. Anakath, R. Kannadasan, G. S. Margarat, and A. P. Pandian, "Dynamic Topology
Management in Ad-Hoc Networks for Improved Performance," in 2024 Second
International Conference on Advances in Information Technology (ICAIT), 2024, vol. 1:
IEEE, pp. 1-5.

Peng nengling, Wei bo, Li zhenshan and Feng jungiang, "Research on electromagnetic
compatibility performance of new energy bus CAN network," 2014 IEEE Conference and
Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China,
2014, pp. 1-3, doi: 10.1109/ITEC-AP.2014.6940678.

C. Zhang, "Research on the Real-time Performance of CAN Bus Based on 4WID New
Energy Bus Network," 2021 International Conference on Information Control, Electrical
Engineering and Rail Transit (ICEERT), Lanzhou, China, 2021, pp. 24-28, doi:
10.1109/ICEERT53919.2021.00013.

A. M. Elshaer, M. M. Elrakaiby and M. E. Harb, "Autonomous Car Implementation Based
on CAN Bus Protocol for IoT Applications," 2018 13th International Conference on
Computer Engineering and Systems (ICCES), Cairo, Egypt, 2018, pp. 275-278, doi:
10.1109/ICCES.2018.8639206.

C. Pengcheng and J. Zhicheng, "Simulation Study on Tracking Control of Mobile Robot
Based on Cascaded Adaptive Approach*," 2007 Chinese Control Conference, Zhangjiajie,
China, 2007, pp. 399-403, doi: 10.1109/CHICC.2006.4347319.

Z.Chen, Y. -S. Hao, Z. -G. Su and L. Sun, "Cascade Disturbance Observer-Based Control
Design for Cascaded Systems With Considerable Inner-Loop Dynamics," in IEEE
Transactions on Automation Science and Engineering, vol. 22, pp. 12621-12632, 2025,
doi: 10.1109/TASE.2025.3544563.

M. T. S. Hugo, C. U. Ofiate and J. K. Molina, "Driving a 3 DOF Robotic Manipulator with
Protected Data through Industrial Communication using Master-Slave Architecture,"
2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin,
Colombia, 2019, pp. 1-6, doi: 10.1109/CCAC.2019.8921340.

M. E. Chamlee, E. W. Zegura and A. Mankin, "Design and evaluation of a protocol for
automated hierarchical address assignment," Proceedings Ninth International Conference
on Computer Communications and Networks (Cat.No.00EX440), Las Vegas, NV, USA,
2000, pp. 328-333, doi: 10.1109/ICCCN.2000.885510.



