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Abstract. Motor control plays a crucial role in daily life, but challenges often arise 

in terms of precise control and scalability. By modularizing motor control using a 

CAN bus master-slave architecture and a built-in PID control servo system, 

modular expansion allows for the selection of the number of motors to be controlled. 

Through the host, each motor's state can be precisely controlled, improving the 

control accuracy and scalability of multi-motor systems. This paper presents the 

system architecture and code implementation of the serial multi-motor 

Communication programme based on the CAN bus master-slave architecture, 

which holds significant practical value in industrial machine applications. 

 

CCS Concepts: Computer systems organization → Embedded and cyber-physical systems → 

Sensor networks 

Keywords: Communication protocol design; Serial communication mechanism; Network 

topology; Motor control system; CAN communication 

1.Introduction 

Against the broader backdrop of the intelligent transformation of the global manufacturing 

industry and the accelerated advancement of “Industry 4.0,” the demand for multi-motor 

cooperative control systems in strategic sectors such as high-end equipment manufacturing, 

new energy vehicles, and intelligent robotics has experienced explosive growth[1-3]. By 2020, 

the global installed base of industrial robots had exceeded 3 million units. The Asian region not 

only exhibited the fastest growth but also accounted for the largest share, comprising 69% of 
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the global installed capacity[4]. Traditional multi-motor control programmes predominantly 

employ centralized PLC or dedicated controller architectures, which present bottlenecks 

including complex wiring, high expansion costs, and weak anti-jamming capabilities. The core 

challenge lies in achieving high-precision synchronization and dynamic coordination among 

multiple motors. Moreover, traditional static IP bonding and star network architectures have 

struggled to meet the demands of rapid deployment[5]. In recent years, fieldbus-based 

distributed control technologies (e.g., CAN, Ether CAT) have enhanced system flexibility to 

some extent; however, existing solutions still exhibit significant limitations in dynamic node 

management, communication delay compensation, and fault self-healing capabilities[6, 7]. 

Based on existing research, the CAN bus master-slave architecture has gradually become the 

mainstream approach for distributed control of multiple motors due to its high reliability, real-

time performance, and anti-interference capabilities [8]. In this paper, we propose a serial multi-

motor communication approach based on the CAN bus master-slave architecture, achieving 

accurate and cooperative control of multiple motors through modular hardware design and a 

master-slave communication protocol. Experimental results demonstrate that the system 

exhibits excellent communication stability in both complex environments and strong 

interference scenarios, providing a high-precision and highly scalable solution for industrial 

robots, electric vehicle drives, and other applications. 

2.Overall design of system 

The serial multi-motor communication scheme based on the CAN bus master-slave architecture 

consists of two parts: the host transmitter and the slave controller. The main advantages of this 

scheme include modular cascade scalability, a master-slave control network for serial nodes, 

and an automatic dynamic node coding protocol. The main advantages of the serial multi-motor 

communication solution based on the CAN bus master-slave architecture include modular 

cascade scalability, a serial node master-slave control network, and an automatic dynamic node 

coding protocol. All slaves are isomorphic and modular, offering greater flexibility than static 

IP bindings for individual nodes. Based on the CAN bus master-slave architecture, the host 

sends data to the slave, which then receives the data and uses the PID control algorithm to 
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achieve accurate servo speed control of the motor. The operator can select a slave and configure 

its data through the master. 

The control relationship between the master and slave is illustrated in Figure 1. 

 

Figure 1. Master and slave control relationship diagram 

3.CAN bus-based master-slave serial architecture design 

In the serial multi-motor Communication programme based on the CAN bus master-slave 

architecture, the design of the master-slave serial architecture and communication protocol is 

crucial. A well-designed communication protocol ensures accurate and efficient information 

exchange between the master and slaves, thereby enabling precise control of multiple motors. 

Such a protocol not only fully leverages the technical advantages of the CAN bus but also meets 

system requirements for dynamics, scalability, and reliability, thereby providing a solid 

foundation for the stable operation of the entire multi-motor control system [8]. 

3.1. Technical characteristics of the CAN bus 

The CAN bus exhibits high reliability, with robust anti-interference capabilities that resist 

electromagnetic interference in industrial environments to ensure stable signal transmission. Its 

error self-testing mechanism can promptly detect and correct transmission errors to guarantee 

data accuracy. Additionally, the automatic fault node disengagement function effectively 

isolates faulty nodes, preventing their impact on the operation of the entire system. Together, 

these features ensure the stability of the CAN bus and the reliability of data transmission under 

complex working conditions, providing a solid foundation for the precise control of multiple 

motors [9, 10]. 
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3.2. Master-Slave String Architecture Design 

The CAN bus supports a multi-master, multi-slave communication mode, making it ideal for 

constructing a multi-motor cascade control system within a master-slave architecture. A system 

can contain one or more masters and multiple slaves. Masters can flexibly communicate with 

each slave to send control commands and receive status information [11-13]. 

3.2.1. Master-Slave Node Functional Classification 

(1) Host Function 

The host is equipped with a human-computer interaction interface, allowing the operator to 

input control data. The host is responsible for parsing these commands, determining the target 

slaves to be controlled, and specifying the motor operating parameters (which can be point-to-

point data frames or cluster packets). According to the operator’s commands, the host 

accurately distributes the data to each slave. 

The master periodically sends data requests to the slaves via the CAN bus in sequential order, 

as shown in Figure 2. The slave receiving the data request responds with real-time motor status 

data, such as speed, current, and temperature. The master stores and analyzes this data. The host 

also stores and analyzes these data to monitor the motor’s operational status in real time, 

ensuring the stable operation of the entire system. 

 

Figure 2. The master acquires slave data in a sequential periodic manner 

When the host detects abnormal data returned by a slave, it can promptly identify a potential 

fault in the motor or the slave controller. The master then sends a stop command to the faulty 

slave and simultaneously issues an alert to notify the operator for timely maintenance and 

intervention. 
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(2) Slave Function 

The slave receives data from the host via the CAN bus, parses the content, and controls motor 

operation accordingly. 

The slave is connected to the motor encoder, current sensor, temperature sensor, and other 

monitoring devices to collect real-time data on motor speed, current, temperature, and other 

status parameters. This information is encoded using a predefined data format and transmitted 

to the host via the CAN bus upon receiving a data request. 

The slave also possesses basic local control capabilities. For instance, if the motor current or 

temperature exceeds a predefined threshold, it immediately initiates protective actions, 

including cutting off the motor's power supply, issuing an alarm, and transmitting overload or 

fault information to the host to prevent damage to the motor or the slave unit. 

3.2.2. Master-Slave Architecture Tandem Connection Design 

Both the host and the slaves are equipped with the TJA1050 chip as the CAN bus transceiver 

and are interconnected via the two signal lines (CAN_H and CAN_L) of the CAN bus. The 

host’s CAN bus interface is connected to that of Slave 0. The slaves are connected in a daisy-

chain configuration, as shown in Figure 3: Slave 0 is connected to Slave 1, Slave 1 to Slave 2, 

and so forth. This configuration facilitates easy expansion of slave nodes and enables cascade 

control of multiple motors. 

 

Figure 3. Design of Serial Connections in Master-Slave Architecture 

The host provides a stable power supply to the slaves, while each slave forwards power to the 

subsequent slave through dedicated inter-slave power interfaces; this power delivery 
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mechanism ensures that each slave receives sufficient current to meet the operational demands 

of the motor, and, as the slaves do not carry onboard batteries, they can be miniaturized to save 

space and enhance portability. 

3.3. Dynamic Node Coding Protocol 

To enable flexible system expansion and automatic identification of slave nodes—while 

avoiding the inconvenience and potential errors associated with manual IP address 

configuration [14], this paper proposes a dynamic node addressing protocol. The core of this 

protocol is that, upon connection to the CAN bus, each slave is automatically assigned a unique 

IP address by the host, enabling precise management and communication. 

3.3.1. Principles of code assignment 

(1) Principle of Uniqueness 

In the CAN bus network, each slave node must be assigned a unique IP address to ensure that 

the host can accurately identify and communicate with each slave. This requirement is 

fundamental to the dynamic node addressing protocol and is enforced through a rigorous 

address allocation and conflict detection mechanism. 

(2) Principle of Continuity 

To simplify management and improve address space utilization, IP addresses should be 

allocated as continuously as possible. The host assigns addresses to slave nodes sequentially 

based on their connection order, thereby minimizing address fragmentation and reducing waste. 

3.3.2. Coding allocation process 

When a slave node is powered on for the first time (i.e., without a stored IP address), it first 

verifies the communication status of the CAN bus to ensure connectivity with the network. It 

then checks its flash memory for an existing IP address. If none is found, it sends a dedicated 

broadcast request frame to the host, requesting assignment of a unique IP address. The purpose 

of this request is to notify the host that a new slave node has joined the network and to initiate 

the dynamic IP assignment process. The format and content of the broadcast request frame must 

conform to a predefined communication protocol, which includes the slave's unique hardware 

identifier (UID) to ensure correct identification and processing by the host. 
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The master continuously monitors communication on the CAN bus, and upon receiving a 

broadcast request frame from a slave, it assigns an available IP address based on predefined 

rules and the current number of slave nodes in the network. The master then generates a 

response frame containing the assigned IP address and the slave’s unique hardware identifier 

(UID), and broadcasts it over the CAN bus. Simultaneously, the master sends the same 

information directly to the requesting slave for confirmation. The master also records the 

assigned IP address and corresponding UID in its internal node management table to support 

future communication and system maintenance. 

Under normal conditions, all slaves in a serial network receive the response frame broadcast 

from the host. However, slaves that have already been assigned an IP address or have received 

an acknowledgement frame will disable their response frame reception channel, thereby 

filtering out subsequent response frame broadcasts and ensuring that their IP addresses are not 

overwritten. Slaves that have not yet been assigned an IP address will process the broadcast 

response frame by verifying whether the hardware identifier (UID) in the frame matches their 

own, to confirm that the frame is intended for them. If the UID matches, the slave extracts the 

assigned IP address from the frame and stores it in its internal Flash memory to ensure data 

retention in the event of a power failure, and then disables its response frame reception channel. 

 

Figure 4. Dynamic Node Encoding Process 
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After storing the assigned IP address, the slave sends an acknowledgement frame to the host, 

indicating successful receipt and storage of the IP address. At this stage, the dynamic IP address 

assignment process for the slave is considered complete. This process is illustrated in Figure 4. 

3.3.3. Power back up from the machine 

In the event of an unexpected or intentional system power failure, upon the next power-up, the 

slave reads its stored IP address from flash memory and sends its hardware identifier along with 

this IP to the host. The host then compares this information against its node management table. 

If the IP address in the node management table matches the one associated with the hardware 

identifier, the host replies with a confirmation frame, allowing the slave to continue using the 

current IP address. If the IP address is already assigned to another node or exceeds the allowable 

range for the current network, the slave will be assigned a new IP address following the 

predefined rules. 

Slaves may also actively clear their stored IP addresses using hardware methods. This process 

is illustrated in Figure 5. 

 

Figure 5. Docking process for re-powering from the machine 

3.3.4. Code Management and Troubleshooting 

If a slave goes offline due to failure or human intervention, the host must detect this promptly. 
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Two scenarios arise when a slave goes offline: (1) the slave fails independently, which does not 

affect the overall operation of the master-slave tandem network; (2) the slave is taken offline 

by human intervention, is completely damaged, or the connecting cable between slaves is 

broken. In the latter cases, the master-slave tandem network is compromised, preventing all 

subsequent slaves, including the affected one, from communicating with the master. 

If the above situation (1) occurs, during the sequential periodic acquisition of slave data, the 

faulty slave will fail to respond when the host requests data. The host will detect a reply timeout 

and, upon confirming this, will identify the slave controller as faulty. Consequently, the host 

will skip the faulty slave and simultaneously issue an alarm to notify the operator to perform 

timely maintenance, as shown in Figure 6. 

 

Figure 6. Slave Individual Troubleshooting Process 

If the above situation (2) occurs, to quickly determine whether the master-slave serial network 

is damaged, the master will individually query the end slave during intervals between regular 

data requests. If the network is damaged, the host will fail to receive a reply from the end slave. 

After two unsuccessful fault query rounds, the host will terminate all slave tasks and initiate a 

fault troubleshooting procedure. The host employs a dichotomous approach to fault query the 

slaves sequentially to quickly identify the faulty slave and continuously alert the operator until 

intervention. Once the fault is resolved and the operator presses the reset button, the host will 
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recheck the master-slave serial network. If the network is restored, the host will notify the slaves 

to resume their tasks, as shown in Figure 7. 

 

Figure 7. Master-Slave Network Compromise Process 

3.3.5. IP address conflict detection and resolution 

Despite the principle of uniqueness and a strict allocation mechanism, IP address conflicts may 

still arise in certain cases. These include when two or more slaves power up simultaneously, 

causing errors due to the overlap of broadcast request frames, or when a slave’s memory failure 

leads to loss of its IP address, resulting in a conflict upon re-requesting allocation. 

When multiple slaves are powered on simultaneously, CAN bus arbitration relies on bit-by-bit 

priority comparison of the identifier (IP), not the content of the data segment. As shown in 

Figure 8. Since all slaves send the same IP in the broadcast request frame, the CAN bus cannot 

distinguish priority via the arbitration mechanism. As a result, slaves will continue sending 

request frames, and after the arbitration segment, they will send data segments. During 

transmission, the slaves monitor the bus level through Bit Monitoring, comparing the 

transmitted bit with the bus level in real time. If an inconsistency is detected in the data segment 

(e.g., an implicit "1" is transmitted but an explicit "0" is received), the slave triggers a Bit Error, 

halting transmission of the current frame and transmitting an error frame instead. All nodes on 

the bus (including the host) will then listen to the error frame. The master will immediately stop 

receiving data and discard the previously received information. 
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Figure 8. CAN bus IP priority 

Simultaneously, the newly accessed slave will attempt to send a request frame again. If it still 

detects a bus level error, this indicates that multiple slaves have been accessed simultaneously. 

At this point, all newly accessed slaves will send a special error frame to the host, which 

contains the same identifier and identical data content (including the same CRC check value). 

The host will treat the bus data as a single valid transmission, receive the message normally, 

and continue to alert the operator upon detecting the special error frame until the operator 

intervenes. Meanwhile, slaves that have not been assigned IPs will trigger a red-light alarm. 

 

Figure 9. IP Conflict Handling Process 

Through the design and implementation of the aforementioned dynamic node coding protocol, 

the serial multi-motor Communication programme based on the CAN bus master-slave 

architecture can flexibly manage slave joining, leaving, and failures, ensuring each slave has a 

unique IP address. This enables efficient and reliable communication and control. The dynamic 

coding method enhances the system’s scalability and maintainability, providing a solid 

foundation for the cooperative control of multiple motors, as shown in Figure 9. 
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3.4. Communication protocol design 

The IP address assignment protocol is illustrated in Figure 10. 

 

Figure 10. Communication Protocol IP Number Assignment Table 

3.4.1. Host Send Protocol 

The host’s regular send IP addresses range from 100 to 980 (assigned to slaves), while 

emergency send IPs range from 001 to 009 and serve special purposes. Regular send IPs are 

used for point-to-point communication, whereas emergency send IPs are broadcast to all slaves. 

When the host sends data using a regular IP, slaves receive only the data corresponding to their 

assigned IP and perform the appropriate operations. 

The host transmits two frame formats: data frames and remote-control frames. Both use the 

standard CAN bus frame format, which includes arbitration, control, data, CRC, and ACK 

segments. 

The master sends three types of frame combinations: 

1. regular send IP with data frame, for normal data transmission to a single slave. 

2. regular send IP with remote control frame, for sending data requests to slaves. 

3. emergency send IP with data frame, for broadcasting emergency commands to all slaves. 

3.4.2. Slave Receive and Response Protocol 

The slave continuously monitors the data flow on the bus via the CAN bus interface. When the 

host sends a receivable frame, the slave first checks the frame type. If it is a data frame, the 

slave receives and processes the data regardless of whether the host IP is a regular send IP or 

an emergency send IP. This is because the underlying control logic of the slave remains 

consistent regardless of the network layer protocol used. If the frame is a control frame, the 
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slave encodes the motor’s real-time status information—such as rotational speed, current, and 

temperature—according to a preset data format and transmits this feedback to the host via the 

CAN bus. 

Upon receiving control data from the master and completing data verification, the slave 

immediately adjusts the motor’s operating status based on the data content. 

3.4.3. Slave Request and Feedback Protocol 

The slave proactively sends data in the following scenarios: during power-up when requesting 

an IP address, upon receiving a data request from the host, in case of slave failure, motor 

overload, overheating, and other related conditions. 

When first powered on, the slave sends a broadcast request frame with IP 099. Upon receiving 

this frame, the host reads the hardware identifier and records it in the node management table, 

then assigns an IP address to the slave based on the current number of slaves in the network. If 

multiple devices power up simultaneously, they send a special error frame with IP 099 

containing identical data to the host. 

The slave’s transmit IPs correspond to the last nine digits of its own IP address, ranging from 

xx1 to xx9. Additionally, the slave has an emergency transmit IP, which delivers information—

primarily fault data—to the host with higher priority. This emergency transmit IP is calculated 

by dividing the slave’s own IP address by 10. For example, if the slave’s IP is 660, its transmit 

IPs range from 661 to 669, and its emergency transmit IP is 066. 

3.4.4. Host broadcast Communication protocol 

When the host uses emergency send IPs, it broadcasts messages to all slaves. IP 001 is used to 

send a stop broadcast command to all slaves and motors, instructing them to immediately halt 

operations—such as in cases of master-slave serial network failure or emergency stops. IP 002 

is used to broadcast a response frame; all slaves in the serial network receive this frame, and if 

the response matches, the slave extracts the IP address from the frame and stores it in internal 

flash memory. IPs 003 to 009 serve as alternate IPs, which can be customized by the operator—

for example, IP 003 may represent a full-speed motor rotation command. 
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4.Computer programming 

The program is developed in C, using Keil uVision5 as the design software. The flowchart of 

the main program is as follows. 

4.1. Host computer program 

(1) Initialization Phase 

Configure the system clock, CAN bus baud rate (500 kbps), GPIO ports (key/display interface), 

and other settings according to system requirements. 

(2) Master Loop Logic 

Upon receiving slave messages, process them according to the preset programme. When data 

transmission is required, read the user-entered parameter settings and motor selection, construct 

CAN data frames, and send them. Periodically send status query requests to the slaves, parse 

the feedback, and update the interactive interface display. In case of faults, perform fault 

detection and emergency handling, such as timeout retransmission or node failure management. 

The main flow of the host is illustrated in Figure 11. 

 

Figure 11. Host Main Flowchart 

4.2. Slave programme 

(1) Initialization Stage 

Read the IP address stored in Flash memory (applicable when powering up in IP application 

mode for the first time). Configure the TIM timer for PWM output at a frequency of 20 kHz, 

set up ADC sampling, and initialize the encoder. 
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(2) Main Loop Logic 

Receive incoming data and determine whether it is a data frame or a remote-control frame. If it 

is a data frame, read the frame data, update the target value, and control the motor using a PID 

algorithm. If it is a remote-control frame, package the most recent motor data and send it to the 

host computer. Subsequently, monitor the motor and collect data. The main flow of the slave is 

illustrated in Figure 12. 

 

Figure 12. Slave Master Flowchart 

5.Practical validation of the programme 

5.1. Theoretical basis for selection of experimental hardware 

STM32F103C8T6 and TJA1050 were chosen as the communication carriers for this experiment. 

The STM32F103C8T6 offers powerful processing capabilities and low-power design, making 

it ideal for multi-motor control systems that require long-term, stable operation. Its built-in low-

noise design, combined with the differential transmission technology of the CAN bus, 

effectively mitigates electromagnetic interference in industrial environments. The TJA1050, a 

transceiver designed specifically for CAN bus communication, uses differential signal 

transmission to resist common-mode interference. It features a wide operating voltage range 

and robust fault detection and self-recovery functions, ensuring stable data transmission in 

harsh environments.  
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5.2. Experimental environment setup 

The experimental setup consists of a PC-based computer, four STM32F103C8T6 minimum 

system boards, four TJA1050 communication modules, a DAP downloader, four red LEDs, and 

several buttons. In this setup, three slaves and one master were powered through the DAP 

downloader, as illustrated in Figure 13. 

 

Figure 13. Physical drawing of system construction 

5.3. Communication Configuration 

The basic CAN communication configuration parameters are listed in Table 1 and Table 2. 

Table 1. Basic configuration parameters for CAN communication 

Dataset baud APB1 BRP TS1 TS2 SJW inaccuracy 

host 500kbps 36MHz 4 5 2 1 ≤0.33% 

Slave  500kbps 36MHz 4 5 2 1 ≤0.33% 

Table 2. CAN communication mode selection 

Dataset Bit Width Setting Filter Settings Mode Setting Related Settings 

host 16-bit wide all pass state Masking Mode FIFO0 

Slave  16-bit wide List Status list mode FIFO0 

5.4. Programme validation 

In the experimental validation, we will assess the performance of the CAN bus-based serial 

multi-motor Communication programme from several perspectives. The effectiveness of the 

coding programme is crucial to ensuring error-free communication between the master and 

slave, as well as accurate identification and assignment of IP addresses. We will evaluate the 

accuracy and real-time performance of data transmission to ensure efficient and stable 

communication during simultaneous multi-motor operation. Additionally, we will test the 

troubleshooting solutions, including how to address equipment or network faults promptly to 

ensure system reliability and stability. 
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5.4.1. Coding programme validation 

The slaves were sequentially connected to the CAN bus network: first, the initial slave was 

connected as shown in Figure 14; then the second slave was powered on without network 

connection as shown in Figure 15; finally, the second slave was connected to the network as 

shown in Figure 16. 

 

Figure 14. Access to the first slave 

 

Figure 15. Access to the second slave but not to the CAN bus 

 

Figure 16. Access to the second slave and to the CAN bus 

5.4.2. Transmission Data Validation 

Data is sent to the slave via the master to verify whether the slave receives both positive and 

negative data, as shown in Figure 17. 
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Figure 17. Master transfers data to three slaves 

5.4.3. Troubleshooting programme validation 

The first slave was actively disconnected from the CAN bus, and alerts were observed from the 

red LEDs of both the master and the slave, as shown in Figure 18. 

 

Figure 18. Disconnection of the first slave from the CAN bus network phenomenon 

The host was actively disconnected from the CAN bus, triggering alarms from the red LEDs of 

both the host and all slaves. The host screen displayed the messages "Network disconnection" 

and "Error IP: 100," as shown in Figure 19. 

 

Figure 19. Bus Disconnect Phenomenon 

Experimental verification shows that the serial multi-motor Communication programme based 

on the CAN bus master-slave architecture ensures reliable communication during operation and 

can promptly and effectively issue alarms according to the preset programme in case of failure. 

6.Conclusion 

This paper proposes a serial multi-motor Communication programme based on the CAN bus 
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master-slave architecture to address poor scalability and insufficient dynamic response in multi-

motor cooperative control. Through modular hardware design, a dynamic node coding protocol, 

and a master-slave communication protocol, the system achieves flexible expansion and high-

precision control of multi-motor systems. The master-slave architecture, supported by the 

dynamic node coding protocol, enables modular cascading of slaves, allowing the system to 

flexibly add or remove motor nodes as needed without manual IP address configuration, 

significantly improving deployment efficiency and scalability. Utilizing the CAN bus 

differential transmission and error self-test mechanism, combined with the host’s periodic 

polling and PID closed-loop control algorithm, the system achieves precise control of multiple 

motors with minimal synchronization error, satisfying the demands of complex load scenarios. 

The system incorporates multiple fault-tolerant mechanisms, including automatic detachment 

of faulty nodes, dichotomous fault checking, and emergency broadcast instructions, enabling it 

to maintain core functions when individual nodes fail or the network is disrupted, thus ensuring 

system reliability in industrial applications. Additionally, the system can sustain core functions 

despite hardware damage. At the hardware level, the design is based on the STM32F103C8T6 

and TJA1050 chips, delivering low power consumption and high real-time performance. At the 

software level, the slave driver communication protocol and dynamic IP allocation via Flash 

memory guarantee rapid system reconfiguration capabilities. 

This programme has limitations in handling simultaneous access by multiple motors and 

depends on the response speed of individual slave fault checks. In the future, we aim to further 

optimize the conflict detection efficiency of the dynamic coding protocol and explore 

deterministic scheduling strategies based on time-triggered CAN (TTCAN) to meet more 

stringent industrial timing requirements. This research provides a cost-effective technical 

reference for distributed multi-motor control systems and holds broad engineering application 

prospects. 
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