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Abstract. With the increasing integration of large 

language models (LLMs) into intelligent vehicle 

cockpits, achieving efficient, accurate, and personalized 

interactions with long-term memory capabilities has 

become a key challenge. Existing vector retrieval 

methods suffer from context inflation issues, while 

static knowledge graphs struggle to capture the time-

varying nature of user preferences. This paper proposes 

the EchoKG framework, which for the first time 

mathematically models the Ebbinghaus forgetting curve 

as a dynamic weight mechanism for knowledge graph 

nodes, enabling the natural decay and reinforcement of 

user preferences. By introducing memory strength S and 

last access time, EchoKG dynamically manages the 

lifecycle of memories. Experimental results on the fully 

open-source dataset EchoCar-Public demonstrate that 

compared to MemoryBank, static knowledge graphs, 

and GPT-4o Memory, EchoKG reduces the average 

context length by 32%, increases the F1 score for intent 

recognition by 5.1%, and improves the personalized 

consistency score by 0.68 points, while maintaining a 

response latency within 800ms. 
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1. Introduction 

Intelligent cockpits are evolving from the traditional "command-execution" mode to the 

"proactive - empathetic" intelligent companion mode. The ideal in-car assistant not only needs 

to understand the current driving instructions (such as "turn on the air conditioner"), but also 

needs to have the ability of Long-Term Memory that spans time periods. For instance, when a 

user sets the air conditioner to 26℃ several times in a row during winter, the system should 

automatically recommend this temperature in the following winter and "forget" this setting in 

summer. This long-term personalized service based on historical interaction is at the core of 
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enhancing user stickiness and in-cabin experience [1]. 

At present, memory enhancement schemes based on large language models (LLMS) mainly 

face two major challenges. The first is the vector memory dilation and retrieval noise 

phenomenon. Methods represented by MemoryBank convert historical dialogues into vector 

storage [2]. With the increase of usage time, the scale of the vector library grows exponentially, 

which not only leads to an increase in retrieval Latency, but also introduces a large amount of 

irrelevant historical noise, occupies the limited Context Window of the LLM, and even triggers 

"hallucinations". Secondly, there is the rigidity of static knowledge graphs. Although 

knowledge graphs (KGS) can provide structured fact storage, traditional KGS are static. Users' 

preferences are dynamic and fluid (for instance, a user might shift from preferring "rock" to 

"light music"). Static KG has difficulty eliminating outdated information through the 

"forgetting" mechanism, leading to recommendation conflicts. 

In response to the above issues, inspired by cognitive psychology, this paper proposes the 

EchoKG framework. The main contribution is that the Ebbinghaus Forgetting Curve [3] was 

introduced into the memory management of the vehicle dialogue system for the first time, and 

the anthropomorification attenuation and enhancement of machine memory were achieved 

through mathematical modeling. A complete dynamic graph update and pruning algorithm for 

EchoKG was proposed. The graph structure was dynamically adjusted through memory 

Strength and Rehearsal, significantly reducing the context load while ensuring personalization. 

2. Related Work 

Early long-term memory methods mainly relied on rule-based Slot Filling, storing and 

retrieving key information through predefined structured fields. However, this method has 

obvious limitations in terms of expressive power and generalization. With the rise of the 

Transformer architecture, the memory mechanism based on vector retrieval Augmented 

Generation (RAG) has gradually become mainstream. By storing historical dialogue summaries 

in vector databases and retrieving them based on semantic similarity, more flexible long-term 

dependency modeling has been achieved [4]. 

However, methods such as Memory Bank will lead to a decline in index efficiency over long-

term operation due to the continuous accumulation of data volume, affecting the system 

response speed and quality. Works such as LongMem and LangMem have attempted to 

alleviate the problem of context redundancy through hierarchical storage and priority strategies 

[5], but they are still insufficient when dealing with changes in user preferences over time or 
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even instruction conflicts (such as users modifying previously given preferences). 

Meanwhile, knowledge graphs have long been used to enhance the knowledge understanding 

of dialogue systems due to their structured expression and explicit reasoning capabilities. For 

example, K-BERT significantly improved the accuracy of domain knowledge question 

answering by injecting knowledge graph triples into the input layer [6]. However, the existing 

work generally focuses on general encyclopedic Knowledge (World Knowledge), and there is 

still a lack of systematic research on how to construct and maintain user profile graphs that can 

be continuously updated over time and reflect users' dynamic preferences, especially in highly 

personalized continuous interaction scenarios such as vehicles, where there is even a blank. 

Furthermore, the exponential decay law of memory over time revealed by the Ebbinghaus 

forgetting curve has been used in recommendation systems to simulate user interest drift and 

has also been widely applied in the Spaced Repetition algorithm in educational software [7]. 

However, in the field of dialogue management of large models, there are no mature methods 

for applying it to dynamic memory pruning or priority reorganization yet. In conclusion, there 

is still much room for exploration in how to effectively integrate long-term memory, knowledge 

graphs, and human memory patterns to construct sustainable and evolving user-level dialogue 

memory [8,9]. 

3. EchoKG frame 

The overall architecture of EchoKG is shown in Figure 1 (a sketch, only describing the logic), 

and the system as a whole is composed of three closely collaborating modules. Firstly, the 

memory encoder and writer is responsible for parsing the natural language input into a 

structured "entity-relations-attribute" triplet and initializing the memory strength for the newly 

written preference information, providing a basis for subsequent dynamic evolution. Secondly, 

the Dynamic KG Core is implemented based on Neo4j. It maintains preference nodes with 

attributes such as timestamps, access frequencies, and creation times, and performs 

reinforcement and forgetting operations on the graph based on users' interaction behaviors, 

enabling it to reflect the long-term trends and immediate changes of users' preferences. Finally, 

the memory retrieval and enhancement generator retrives several most relevant subgraphs from 

the graph in the dialogue based on the current query, linearizes them and injects them into the 

language model to construct context inputs with more personalized user characteristics. 

In terms of user preference modeling, we have constructed a dynamic preference knowledge 

graph 𝐺 = (𝐸, 𝑅, 𝑃) , which includes a set of preference entities, a set of semantic relations, 
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and a set of dynamic attributes. For any preference node, we maintain its key attributes such as 

memory strength 𝑠 , last access time 𝑡𝑙𝑎𝑠𝑡 , recurrence times 𝑛 , and creation time. Take 

temperature preference as an example. A typical preference record can be expressed as: 

< 𝑈𝑠𝑒𝑟001, 𝑃𝑅𝐸𝐹𝐸𝑅𝑆𝑇𝐸𝑀𝑃, 24𝐶, {𝑆, 𝑛, 𝑡𝑙𝑎𝑠𝑡, 𝑡𝑐𝑟𝑒𝑎𝑡𝑒} > 

 

Figure 1:EchoKG framework Architecture diagram 

The dynamic attributes among them are used to continuously describe the evolution state of 

preferences during the system's operation. When a user frequently mentions a certain preference, 

its memory strength will be enhanced, while when the preference remains inactive for a long 

time, it will naturally decline over time. 

To simulate the forgetting mechanism of human memory, we combine the core idea of the 

Ebbinghaus forgetting curve and conduct a discrete modeling of it to adapt to the intermittent 

interaction mode in vehicle-mounted scenarios. In EchoKG, the temporal evolution of memory 

intensity depends on two key factors: one is the user's "review" behavior (i.e., the recurrence of 

preferences), and the other is the time interval since the last activation. Based on this, we update 

the memory intensity in the following form: 

𝑆(𝑡) = 𝑓(𝑛) ∙ 𝑔(∆𝑡) 

Here, 𝑓(𝑛) represents the enhancement effect that occurs with the increase in the number of 

reproductions, showing a marginal diminishing characteristic; And 𝑔(∆𝑡)  depicts the 

exponential decay process of memory over time. To provide a more explicit modeling form, we 

parameterized it in the experiment, making the memory attenuation more in line with the usage 

frequency and interest change patterns of real users: 
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𝑆(𝑡) = 𝑆0(1 + 𝑛)𝛼𝑒−𝛽∆𝑡 

Here, 𝑆0 represents the initial intensity, α controls the strengthening rate, and 𝛽 describes the 

attenuation rate. In this way, the system can automatically achieve the effect of "retaining 

important preferences for a long time and gradually fading outdated preferences" in long-term 

interaction. 

Overall, EchoKG effectively combines structured preference modeling, dynamic graph 

updates mechanisms, and human memory patterns, enabling the system to maintain 

personalized consistency while flexibly adapting to the natural changes in user interests. As a 

result, it demonstrates higher stability and intelligence in long-term interaction scenarios such 

as in-vehicle conversations. 

The retrieval module uses Cypher query statements to obtain nodes with 𝑆 > 1.0 and the Top 

-10 semantic similarity. The retrieved subgraphs are linearized into natural language prompt 

words. For example: Prompt: "User historical preference memory: [Air Conditioning 

temperature: 24 degrees (Strong preference)], [Frequently Heard singer: Eason Chan (Medium 

preference)]. Please reply to the user based on this". 

4. Experiments 

4.1. Dataset Construction 

To address the long-standing problem of scarce public data in the field of in-vehicle dialogue, 

we have built and open-sourced the EchoCar-Public dataset. Based on the systematic cleaning, 

integration and reconstruction of the existing multi-round dialogue resources, this dataset 

generates supplementary long-term preference scenarios through a large model, and finally 

forms a Chinese-English mixed dataset containing 15,800 rounds of dialogues. Among them, 

the English part is mainly derived from typical task-oriented corpora covering transportation, 

navigation and ancillary services such as MultiWOZ 2.4, SGD and KVRET [11-13]; The 

Chinese part integrates Chinese MultiWOZ and CarChat-1K, and utilizes approximately 5% of 

the large model to enhance the samples and expand the diversity of cross-round preference 

expressions and temporal dependencies. To evaluate the adaptability and forgetting mechanism 

of the model in long-term interaction, we deliberately injected preference conflict and 

correction events spanning different time spans (such as Day 1, Day 7, Day 30) into the dialogue, 

enabling the dataset to more comprehensively cover preference drift behavior in real scenarios.  
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4.2. Experimental Setup 

The experiment was carried out based on Qwen2-7B-Chat (4-bit quantization), and vector 

retrieval memory banks, static knowledge graph structures, long-term memory compression 

methods, and commercial closed-source memory mechanisms were selected as control schemes 

to comprehensively investigate the differences in efficiency, accuracy, and stability of different 

memory systems in vehicle scenarios. To achieve more identifiable comparisons, we 

comprehensively measure system performance by using indicators such as intent recognition 

F1, context length, personalized consistency, and response delay [14]. The degree of intent 

recognition reflects the semantic understanding ability of the model. The length of the context 

reflects the compression ability of different memory strategies on the input scale of LLMS. 

Personalized consistency is used to verify whether the response aligns with the user's historical 

preferences. Response delay measures the availability of a system in real-time interaction. 

4.3. Main Results 

The experimental results show that EchoKG demonstrates significant advantages in both 

efficiency and long-term stability. In terms of context management, as the graph can compress 

the original dialogue into discrete and structured preference nodes, the number of input tokens 

generated by EchoKG is only about half of that of traditional vector retrieval schemes, thereby 

significantly reducing the model inference cost and keeping the response delay at an acceptable 

low level for in-vehicle interaction. In terms of semantic understanding, the dynamic forgetting 

mechanism effectively eliminates outdated preferences, reduces noise interference, and makes 

the intent recognition performance superior to that of static graphs. It is also worth noting that 

in terms of the personalized consistency index evaluated manually, the performance of EchoKG 

is close to that of commercial closed-source memory systems, indicating that the introduction 

of a time decay mechanism helps the model form a preference retention behavior similar to 

human "familiarity" in long-term interactions. 

To further verify the long-term stability of the system, we constructed a 30-day simulated 

interaction scenario. The results show that traditional static graphs will continuously 

accumulate one-off preferences in the early stage, leading to structural redundancy. Over time, 

EchoKG will gradually weaken the memory intensity of low-frequency preferences and 

automatically perform pruning operations when the intensity drops below the threshold, 

keeping the scale of the spectrum always within a controllable range and being able to 

dynamically reflect the user's true long-term habits. This phenomenon verifies the rationality 

of modeling based on the Ebbinghaus forgetting curve and also indicates that introducing 
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psychological memory laws into the graph memory system has dual advantages in theory and 

practice. 

Table 1. The experimental results. 

Method Intention F1 Token Personalized consistency (1-5) MOS Delay (ms) 

Vanilla Qwen2 0.796 1980 2.58 3.34 670 

MemoryBank 0.837 2980 3.71 3.91 1280 

Static KG 0.854 1820 4.05 4.12 710 

EchoKG (Ours) 0.905 1340 4.73 4.79 780 

GPT-4o Memory 0.918 - 4.81 4.86 2200+ 

5. Discussion and Limitations 

While introducing a forgetting mechanism to enhance system efficiency, the high safety 

requirements of in-vehicle scenarios also impose additional constraints. For important 

information related to driving safety or emergency response, such as users' preferences for 

vehicle handling characteristics (such as brake sensitivity), emergency contacts, etc., their 

semantic attributes have a high degree of safety sensitivity and thus should not be weakened 

over time. Based on this, we designed and implemented the "Immortal Whitelist" mechanism 

in EchoKG, forcibly setting the attenuation coefficient beta to 0 for all attributes marked as 

Safety-Critical. Theoretically, it is necessary to ensure that such information has permanent 

memory weights in the graph, thereby achieving the non-forgeability of security semantics. 

On the other hand, the parameters alpha and beta in the forgetting curve have a decisive 

influence on the memory evolution process, and the preference patterns of different user groups 

may vary significantly in the time dimension. For instance, the preference switching frequency 

of young users is usually higher, which implies that a larger attenuation coefficient beta may be 

required in dynamic modeling. In contrast, elderly users with more stable preferences 

correspond to a slower rate of memory decline. The above phenomena indicate that fixed 

parameters are difficult to cover the heterogeneity of the real user group. Therefore, future work 

will extend to the parameter adaptive method based on Meta-Learning [15], enabling the 

forgetting model to continuously adjust according to the long-term behavioral characteristics of 

users, thereby achieving more refined personalized memory management. 

In addition, the current computing of EchoKG is mainly deployed at the edge nodes of the 

vehicle to ensure that the inference delay meets the real-time requirements of in-vehicle 
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interaction. However, the computing resources at the vehicle end are limited, while large-scale 

graph construction, attribute clustering, and cross-user knowledge mining are more suitable to 

be carried out in the cloud where resources are abundant. Therefore, we plan to further explore 

the "vehicle-cloud Federation" collaborative architecture: completing high-complexity graph 

enhancement and statistical modeling on the cloud side, and performing lightweight inference 

and local storage of privacy-sensitive information on the vehicle side, thereby achieving cross-

terminal knowledge fusion and dynamic synchronization while ensuring user privacy and 

system efficiency. 

6. Conclusions 

The EchoKG framework proposed in this paper innovatively utilizes the Ebbinghaus 

forgetting curve to solve the problem of long-term memory management in in-vehicle dialogue 

systems. Through mathematical modeling with dynamic weights, EchoKG significantly 

reduces computing resource consumption and response delay while maintaining high-precision 

personalized services. Experimental data show that this method has extremely high practical 

value in real vehicle scenarios. 
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