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1. Introduction

Abstract. Human balance is a skill gradually
established through a sensory-action-feedback loop,
relying on repetitive training, trial-and-error
mechanisms, and the dynamic plasticity of synaptic
connections. In this process, sensory signals are
continuously transmitted to the central nervous system,
where stable motor paths are formed through learning,
enabling action reuse without complex calculations.
Inspired by this mechanism, this paper proposes a
balance learning method based on brain-like spiking
neural networks and dopamine-modulated synaptic
plasticity for self-learning control of the classic inverted
pendulum system. The method connects the one-hot
encoded sensory neuron group with motor neurons and
utilizes a reward-driven synaptic weight update
mechanism to gradually master the stable control of the
inverted pendulum without the need for prior models or
training data. Unlike traditional control algorithms such
as PID or LQR, this approach features biological
realism, strong adaptability, and self-organizing
behavior, providing a new perspective on bio-inspired
learning strategies for artificial intelligence in
continuous control tasks.

Keywords: Spiking Neural Network; Dopamine-
modulated Synaptic Plasticity; Autonomous learning;
Reward

In traditional control engineering, control loops typically consist of several key modules: the
internal and external state perception modules, the control decision module, and the system
dynamic model module [1, 3]. The working principle of a controller is to predict the future
expected state based on the system's current state and the acquired environmental information,

and then generate control actions accordingly, ultimately driving the system to achieve the
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desired behavior. In terms of control methods, model-based control relies on accurate modeling
and simulation of the physical process to predict system behavior, while model-free control
does not require an explicit dynamic model [4, 14], instead optimizing the control strategy

through continuous interaction with the environment.

In recent years, machine learning techniques, particularly deep reinforcement learning (Deep
Reinforcement Learning, DRL), have been widely applied in control tasks such as industrial
process control, autonomous driving decision-making, and robotic operations, due to their
powerful ability to learn complex strategies in high-dimensional state spaces [7, 12]. However,
although traditional artificial neural networks (ANNs) mimic the connections of biological
neurons in structure, their computational units are essentially continuous numerical mappings.
This fundamentally differs from the time-dependent computational mechanisms that biological
neural systems rely on, which depend on spike transmission [13, 18-23]. To bridge this gap,
Spiking Neural Networks (SNNs), as the "third generation of neural networks," have been
proposed. SNNs use spike trains in the time domain to transmit information, more accurately
simulating the way signals are transmitted between biological neurons [9, 10]. The advantage
of SNNs lies not only in their ability to encode information in time, but also in their event-
driven sparse activation mechanism, which significantly improves energy efficiency, making

them more suitable for embedded control scenarios with limited resources.

To enable SNNs to learn effective control strategies, researchers have developed various
reward-modulated synaptic plasticity mechanisms. For example: R-STDP (Reward-modulated
STDP): Combines the spike-timing differences (STDP) of pre- and post-synaptic spikes with
external reward signals to achieve fine-tuning optimization of the strategy.RM-STDP: Builds
upon R-STDP by introducing a weight-dependent multiplicative modulation factor to enhance
the stability of the training process and the generalization ability of the strategy [9, 24-27].TD-
STDP: Introduces the temporal difference error from reinforcement learning into the synaptic

learning process and uses an eligibility trace mechanism to address the reward delay issue.

Although mechanisms such as R-STDP, DA-STDP, and TD-STDP have initially established
a connection between synaptic plasticity and environmental rewards, they still have limitations
in terms of biological realism, effective handling of delayed rewards, and adapting to dynamic
task feedback. R-STDP mainly controls and amplifies the synaptic update based on
instantaneous reward signals, making it difficult to effectively cope with situations where
reward signals are significantly delayed [16, 17]. The DA-STDP model only establishes a

weight update mechanism between pre- and post-synaptic spikes and fails to capture delayed
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rewards that appear several seconds after the behavior [28-32].

In contrast, DE-STDP (Dopamine-Eligibility STDP) shows greater potential in terms of
biological plausibility and mechanism consistency [8, 33]. This mechanism uses dopamine (DA)
concentration as a dynamic modulation factor and introduces the "eligibility trace" variable,
coupling the local plasticity of STDP with the global reward signal reflected by dopamine
concentration, giving synaptic weight changes "causal controllability" over time. This not only
naturally simulates the core function of dopamine in reward-driven learning in biological neural
systems, but also eliminates the need for external TD error calculation modules. The key feature
of DE-STDP lies in its temporally separated weight update mechanism: STDP determines the
possible direction of weight change based on spike timing differences (eligibility trace). The
reward gating is then executed, with dopamine signals deciding whether these preset changes
are actually implemented. This "trace-reward" pairing mechanism aligns with the time-scale
differences between plasticity events and reward signals in biological systems [11, 15]. This
two-stage regulation strategy makes DE-STDP advantageous in tasks involving sparse

reinforcement signals, significant reward delays, or the need for local plasticity adjustments.

Unlike current mainstream control methods based on reinforcement learning or deep neural
networks, this study emphasizes exploring the synaptic learning rules and biological
information processing mechanisms achievable by the nervous system itself, and focuses on the
possibility of efficient, unsupervised balance learning in low-dimensional state spaces. The
research not only validates the practical feasibility of DE-STDP in dynamic control tasks but
also provides theoretical foundations and potential technical pathways for promoting brain-like

computational paradigms in practical control systems.

2. Methodology

2.1 Network Structure

To achieve reinforcement learning control for the inverted pendulum system, this study
constructs a two-layer spiking neural network consisting of an input layer and an output layer.
The network structure is simple, with clear connections, providing good biological
interpretability and hardware deployment potential.

The input layer consists of 24 Leaky Integrate-and-Fire neurons, which receive discretized
encoded information of the environment's state. Specifically, the system's four-dimensional
state variables (cart position, cart velocity, pole angle, and angular velocity) are discretized into

several intervals and mapped to the 24 neurons using one-hot encoding. This ensures the
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unambiguous transmission of state information and the capability for spike-based expression.
The output layer contains 2 neurons, each representing one of the two discrete control actions
(applying force to the left or applying force to the right). The network uses a fully connected
structure, meaning each neuron in the input layer is synaptically connected to all neurons in the

output layer.

To reduce computational complexity and enhance the biological plausibility of neuron
behavior, this study adopts the classic Leaky Integrate-and-Fire model for neuron modeling
[37-39]. In this model, each neuron contains only one state variable—its membrane potential

V(t) , and its dynamic behavior follows the differential equation:

dv V(t) —V_rest I_syn(t)+ I_ext(t)

—_—— +

dt T_m C_m

In this model, V_rest represents the resting potential, T_m is the membrane time constant,

and C_m is the membrane capacitance. I_ext(t) represents the externally injected current,
primarily coming from the state perception input. I_syn(t) is the total synaptic current,
triggered by synaptic inputs from within the network. When the membrane potential V(t)
exceeds the threshold voltage V_th, the neuron is considered to fire a spike and undergoes a

potential reset followed by a refractory period [4].

This network architecture fully integrates the fundamental characteristics of biological neural
systems, while maintaining high engineering feasibility, providing a solid foundation for

subsequent control learning based on reward-modulated spiking plasticity rules.

2.2 State Discretization and One-Hot Encoding

The spikes generated by the input neurons are used to encode the observation states of the
inverted pendulum system. Each observation variable of the system (including the cart position
x. velocity v. pole angle 8 and angular velocity w) is mapped to an integer index according

to the following rule[32]:

0, obs £ 0bS
. X-Xmin
id_obs=- floor(- e ) 0bSpin < 0bS < 0DS oy
Nitatesobs=L 0bs = 0bSyax

In this context, Ax is the width of each interval, and obs,,;,, and obs,,,, are the

discretization limits for the variable. The total number of discrete states for each variable is
X-Xmin
Ax

given by:  Nyesops=ceil( ) » The combination of the four observation variables forms a
complete state (id,, id,, idj, id,)), The total number of states in the system is:

27



Research on Bio-inspired Self-balancing Control Based on LIF Network

— %k % *
jvstates,total - jvstates,x /vstates,v /vstatesﬂ ]vstates,w
To achieve a unique representation for each state, each group of states is encoded by a set of

Rinput iNput neurons. Therefore, the total number of neurons in the input layer of the SNN is:

Nz‘nput neurons = Nstates total ™ Ninput
When a specific state is input, only the n;,,,, neurons corresponding to that state will spike,
while all other neurons remain silent. This method is a classic example of one-hot encoding
[30,34], which is commonly used in machine learning to represent categorical variables. For

the discretization of the angle 6 :

the central balanced region [-n/12, n/12] (equivalent to [-15°, 15°]) is divided into 10

subintervals;

The other unbalanced regions (such as [-1/2, -n/12] and [n/12, ©/2]) are divided into coarser

subintervals.

This type of "sparse-dense-sparse" partitioning helps to enhance the system's resolution in

the critical balanced region, thereby improving control performance.

2.3 Reward Function Design

Intuitively, the reward function should reflect the core objective of the control task, which is
to maintain the pole in the upright position. Since the control outcome depends on the action
selected and executed in the current state of the system, when an action guides the system
toward a direction more favorable for achieving this goal, it should be assigned a positive
reward. To enhance the Spiking Neural Network (SNN) controller's responsiveness to system
dynamics, various reward functions are designed based on the evolution of the state. As the
reward function progresses from R; to R,, the perceptual variables introduced become more
complex, and the feedback mechanism transitions from a single physical quantity to a
composite trend judgment. This allows the system to become more sensitive to "balance
tendency" during the training process [35,40]. The second reward function R; is based on the

trend of angular velocity changes between two time steps.

]: Woid * Wnew <0
R, (wold’wnew): I, [Wnew!| > |woial
-1, otherwise

In this context, the first term checks whether the direction of the angular velocity has reversed,
which indicates that the system is attempting to correct the existing rotational trend. The second

term encourages a reduction in angular velocity, reflecting the control action's effect in
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suppressing the rotation amplitude. If neither of these conditions is met, the action is considered

ineffective, and a punitive reward of -1 is applied to the system.

R, builds upon R; by further considering the trend in the direction of the angle to improve

the system's overall ability to judge the return to equilibrium. It is defined as follows:

RJ (w()[drwnew)’ Qnew * Wold > 0
RZ(a)old:a)new’ eold’ enew): ], Gnew * Wold <0Oand enew * Wpew < 0
-1, otherwise

The logic of this function emphasizes that when both the angular velocity and the angle
direction point toward the "return to vertical" trend, a positive reward should be given;
otherwise, a penalty is applied. Particularly in some cases, if the angle 6,,;, and the angular
velocity w,;; have opposite signs, it indicates that the current angular velocity is actually
decreasing the tilt angle, meaning the action itself has a positive effect. In such a case, simply
using the "direction reversal or deceleration" criterion in R; is insufficient to accurately
evaluate the system's evolution. Therefore, R, further introduces a check on the sign
combination of 8,,,, and w,,,,if the signs of §,,,, and w,,,, are opposite, it indicates that the
new state is still maintaining the ideal trend of "angular velocity correcting the angle," and a
positive reward is given; otherwise, the action is considered detrimental to system balance, and
a punitive reward of -1 is applied. Compared to R;, R, can more accurately recognize the actual
contribution of the agent's action to the "system's return to balance" and provides more

directional feedback signals during the SNN learning process.

2.4 DE-STDP

Since the dynamics of intracellular processes triggered by STDP and dopamine (DA) are not
yet fully understood, this paper proposes a simplified phenomenological model to characterize
the basic mechanism by which DA regulates STDP plasticity. Referring to the method by 7 et
al. (2004) [46], the paper uses two phenomenological variables to describe the state of each
synapse: the synaptic weight (s) and the enzyme activity variable (c) closely related to synaptic
plasticity, such as the autophosphorylation of CaMK-II (Lisman, 1989), oxidation reactions of
PKC or PKA, or other slower biochemical processes. These processes together form the so-
called "synaptic tag" [38-41].

The basic dynamics of the model are described as follows:

o= — +STDP(t)S(t-Lyre post)

Here, ('\delta(t) ) is the Dirac delta function, which is triggered when the pre- or post-neuron

fires at the times (‘¢ _{\text{pre}} ) or (t_{\text{post}} ), causing the variable ( ¢ ) to be updated
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according to the STDP curve (Figure 1b). To clarify the mathematical nature of the STDP
mechanism, the following model function is used to describe the synaptic timing-dependent
plasticity changes [2, 47]:

A*e('rA_b , ifAt>0

At

Ae®,  ifat<o

W(A?)

At=t;-t; represents the time difference between the postsynaptic and presynaptic neuron
spikes, with 4" and A4~ representing the maximum adjustment amplitudes for long-term
potentiation (LTP) and long-term depression (LTD), respectively, and z* . 7 being the

corresponding time window constants. This function characterizes the update magnitude of the

synapse at different time differences, reflecting the fundamental principles of STDP.

The accumulated "plasticity potential" of the variable ccc only influences the synaptic weight
sss when the DA concentration d > 0, enabling synaptic strengthening or weakening. Therefore,
c(t) is considered as the "plasticity trace" or "eligibility trace" of the synapse, a concept
introduced by Houk, Adams, and Barto (1995) [43-46]. Additionally, the dynamics of DA are
described by the following equation:

d=-2+DA(1)
7q

Here, 14 is the dopamine (DA) uptake time constant, and DA(t) represents the DA input
generated by dopaminergic neuron firing in brain structures such as the ventral tegmental area
(VTA) and the substantia nigra compacta. In this study, ty =0.01 s, s is set to reflect the rapid
clearance of DA in physiological processes. To better simulate the phasic and tonic patterns of
DA, and in line with the dopamine encoding logic shown in Figure 1, when the system receives
areward (reward = 1), DA(t) is set to 0.05 uM, corresponding to the phasic activation triggered
by reward in Figure 1(a) or the activation after conditioned stimulus predicts a reward in Figure
1(b). In the absence of a reward or with a negative reward (reward = -1), DA(t) is maintained
at a baseline level of 0.001 uM, corresponding to tonic inhibition during the reward absence
shown in Figure 1(c). At the same time, the background DA concentration is incorporated into
the STDP weight update mechanism, represented by the following formula::

§=c(d-d_ baseline)
Here, d baseline = 0.005 uM represents the background DA level of the system. This

mechanism makes the synaptic potentiation process more sensitive to increases in DA

concentration, while it becomes less likely to produce reinforcement effects when the DA level
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is below the baseline, helping to suppress the phenomenon of false reinforcement.

a
(@) Reward
-I E 3
A | | —
(b} s A I?/L 1 2
ES : : —
o 1 2
c )
. : : -
= 0 ! 2
¢ Time [s]
Conditioning
stimulus

Figure 1. dopamine reward rule

In the inverted pendulum control system, the learning and reward mechanism is similar to
the dopamine response logic shown in Figure 1. When the system successfully maintains
balance, it corresponds to the reward activation in Figure 1(a), where dopamine activity in the
neurons increases, reinforcing the successful balancing action. As the system learns, if the
inverted pendulum has already learned the relationship between specific control signals and
successful balance, these signals become conditioned stimuli, similar to the situation in Figure
1(b), where neurons respond to the conditioned stimulus in advance, without waiting for the
reward to arrive. Eventually, when the system can predict the reward through the conditioned
stimulus, the neuron’s response becomes more stable, as shown in the trough in Figure 1(c),
indicating that the system has learned how to efficiently and automatically maintain balance,
without relying on every reward feedback. This learning process makes the inverted pendulum

system more independent, enabling it to maintain balance more stably.

In summary, the model reasonably integrates the millisecond-scale synapse-specific STDP
with the second-scale behavioral feedback in terms of timescale differences, as reflected in the
dopamine encoding of reward timing in Figure 1. Although there is currently no direct
experimental evidence to prove or disprove this model, it provides a clear, testable theoretical

framework for exploring the regulatory mechanism of DA in STDP.
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3. Results

3.1 Experimental Environment

The Cart-Pole system is one of the most classic control problems in reinforcement learning
and is widely used to evaluate the performance of various control algorithms. In recent years,
many studies based on Spiking Neural Networks (SNNs) have also used this system as a
platform for algorithm testing [35,42]. This task can be described as follows: a cart and a rod
connected by a hinge form the system, with the rod being able to rotate only in the plane
perpendicular to the ground. The cart (Fig. 2) moves along a frictionless horizontal track, and
the control agent must choose an action in each frame: apply a force to the left or to the right.
The chosen action will affect the dynamics of the entire system, with the control objective being

to keep the rod upright for as long as possible without becoming unstable.

In the MuJoCo simulation environment, decisions are made every 16 milliseconds. The

observed system state includes:

The position of the cart: X, in meters;

The velocity of the cart: v = %, in meters per second,

The angle of the rod: 0, in radians (usually referenced to the vertical direction);
The angular velocity of the rod: w = z—f, in radians per second.

The simulation will terminate when any of the following conditions are triggered:
Rod tilt: The absolute value of the rod's angle exceeds 15°.

Cart out of bounds: The position of the cart exceeds the track boundaries of -2.0 meters to

2.0 meters.

Figure 2. Cart and pole
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3.2 Experimental Plan

In this experiment, the initial network weights are set to small random values, and the Spiking
Neural Network (SNN) learns online through continuous interaction with the environment. The
system's learning objective is to continuously keep the rod within a specified angle threshold
range, i.e., in the "balanced state," for each episode until the cart exceeds the track boundary,
which is considered a successful episode. The training process consists of 200 episodes. To
evaluate the model's stability and generalization ability within a local time window, this paper
introduces a sliding window success rate metric. Specifically, it is defined as the proportion of
episodes within a sliding window of fixed length (20 episodes) where the number of balanced
steps exceeds 7000 steps. This metric is considered the probability of "success" within the
window. It dynamically reflects the phase effectiveness of the strategy and the stability
improvement during the convergence process. To comprehensively evaluate the performance
of different STDP mechanisms, all employing the reward function defined in R, ,the
experiment compares the training performance of three plasticity rules: R-STDP (basic version),

DA-STDP (with dopamine signal), and DE-STDP (with error and dopamine signal).

3.3 Experimental Results and Analysis

3.3.1 Evolution of Balance Steps During Training

R-STDP
Balanced Steps per Episode Sliding Success Rate
8000 b dl Gt =
0 1o M AW 0
PN 3 ok
3
Eos
H W
T /
| | I % o 7
N TN W So2
1) | | g
1\ o Balanced steps | O
100 125 150 s 200 [ E 50 7 160 135
Episode Episode
DA-STDP
Balanced Steps per Episode Sliding Success Rate
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(LAl W)/ W
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g ‘ ; 2
] S0
3 6000 ‘ ‘ ‘ ‘ | | ' " 3
§ o ‘ iy f 50
2 o
a !' {‘Jr, | i | i,
I g
/" \ I a, — Vi 100% Success
% 5 W0 15 150 15 200 [ = B 7 160 3 0 s 260
Episode Episode
DE-STDP

Balanced Steps per Episode Sliding Success Rate

I/ 'A' T
L 1 "r\w‘\

| ]
L LA ol
‘ VI |

10000 |'
1 |‘1| |
M L

ed Steps

Balanc

Success Rate (Window=20)

50 7 W5 B0 15 200 ] 3 % 7 160 135 150 175 260
Epvsode Episode

Figure 3. the comparison of performance for the three different STDP mechanisms
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Fig. 3 shows the evolution of the number of balance steps per episode during the training
process under three different STDP learning rules. R-STDP exhibits a significant training delay,
with a notable improvement occurring only after around the 100th episode. In contrast, DA-
STDP and DE-STDP quickly converge around the 110th episode, with DE-STDP
demonstrating a strong learning capability in the early stages and maintaining the highest

stability after convergence.

As shown in the figure, under DE-STDP modulation, the number of balance steps in the SNN
during the CartPole task evolves over the course of training. In the initial phase (approximately
the first 100 episodes), the SNN struggles to maintain the rod's stability, demonstrating a clear
exploration phase. However, as training progresses, the synaptic connections are gradually
optimized under DA modulation, and the system's balancing ability improves significantly. DE-
STDP outperforms both R-STDP and DA-STDP in terms of convergence speed and stability,
while DA-STDP shows a higher success rate and better sustained balance ability compared to

R-STDP in the later stages.

3.3.2 Evolution of Maximum Angle During Training

This experiment uses the "maximum angle per episode" as a core observation metric to
compare the training performance of R-STDP, DA-STDP, and DE-STDP in reinforcement
learning tasks. By analyzing the fluctuations of the maximum angle over 200 episodes, the
convergence and stability of different mechanisms are evaluated. From the experimental curves,
the performance differences among the three STDP mechanisms are significant: R-STDP
remains within a large oscillation range of -15° to 15° throughout the 200 episodes, with the
system continuously cycling between "exploration and loss of control." This occurs because it
relies solely on the temporal correlation between pre- and post-synaptic neurons, without
considering "reward delay" or "error feedback," leading to an inability to establish a stable

"action-reward" relationship. Its variance is 112.39, indicating large fluctuations.

DA-STDP, through dopamine encoding of the "reward prediction error," shows phase-wise
convergence. The fluctuations in the first 50 episodes are similar to R-STDP, but after the 75th
episode, the oscillation amplitude gradually decreases. After the 125th episode, it stabilizes
between -5° and 10°. Although there is some convergence, due to the unresolved "temporal
mismatch between actions and delayed rewards," there is still some fluctuation in the later

stages. Its variance is 116.38, with reduced volatility compared to R-STDP.

DE-STDP performs the best. There is some fluctuation in the first 50 episodes, but after the
75th episode, the oscillation amplitude rapidly narrows. After the 125th episode, it stabilizes
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between -5° and 5°, and approaches 0°, achieving stable angle control. Its variance is 55.62,
indicating a more stable learning process. Overall, R-STDP performs the worst due to the lack
of adaptation to reward delay, DA-STDP shows improvement but with limited convergence,
and DE-STDP excels in both convergence speed and stability, providing a more efficient STDP-

based reinforcement learning framework.

R-STDP

Maximum Angle per Episode

Max Angle (%)

25 50 s 100 125 150 175 200

Episode
15
10
H
0
]
-10 u

-15

0

0

Maximum Angle per Episode

Max Angle (%)

—— Max Angle (*)

DA-STDP
25 50 75 100 125 150 175 200

Episode

DE-STDP

Maximum Angle per Episode

Max Angle (*)

— Max Angle (*)

25 50 s 100 125 150 175 200

Figure 4. shows the comparison of performance for the three different STDP mechanisms,
illustrating the fluctuations of the maximum angle over 200 episodes.

3.4 Summary
This paper presents and implements a biologically-inspired phenomenological modeling
approach focused on dopamine-modulated, time-dependent synaptic plasticity mechanisms,

aiming to explain how delayed rewards at the behavioral level can lead to adjustments in

synaptic strengths at the neural synapse level. The model draws from the ideas proposed by
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Izhikevich et al., with the core concept being the introduction of two synaptic variables:
synaptic weight (s) and the eligibility trace variable (c). The model is biologically grounded,
combining the weight potential change (STDP rule) triggered by spikes with the delay
mechanism of reward signals. This method is particularly suited to address a common issue in

reinforcement learning — the delay of rewards relative to the timing of neural firing behaviors.

Additionally, the DA signal in the model is expressed in both baseline and phasic forms, with
the sensitivity of weight adjustments under different DA concentrations enhancing the system's
ability to differentiate environmental feedback and avoid erroneous reinforcement. This
strategy effectively resolves the insensitivity to delayed rewards found in traditional STDP
models, offering enhanced learning stability and biological plausibility. In conclusion, this
approach provides a reasonable and experimentally testable modeling framework for synaptic
learning mechanisms in neuromorphic reinforcement learning, especially suited for adaptive

behavioral learning systems in delayed reinforcement scenarios.
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