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Abstract. Human balance is a skill gradually 

established through a sensory-action-feedback loop, 

relying on repetitive training, trial-and-error 

mechanisms, and the dynamic plasticity of synaptic 

connections. In this process, sensory signals are 

continuously transmitted to the central nervous system, 

where stable motor paths are formed through learning, 

enabling action reuse without complex calculations. 

Inspired by this mechanism, this paper proposes a 

balance learning method based on brain-like spiking 

neural networks and dopamine-modulated synaptic 

plasticity for self-learning control of the classic inverted 

pendulum system. The method connects the one-hot 

encoded sensory neuron group with motor neurons and 

utilizes a reward-driven synaptic weight update 

mechanism to gradually master the stable control of the 

inverted pendulum without the need for prior models or 

training data. Unlike traditional control algorithms such 

as PID or LQR, this approach features biological 

realism, strong adaptability, and self-organizing 

behavior, providing a new perspective on bio-inspired 

learning strategies for artificial intelligence in 

continuous control tasks. 
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1. Introduction 

In traditional control engineering, control loops typically consist of several key modules: the 

internal and external state perception modules, the control decision module, and the system 

dynamic model module [1, 3]. The working principle of a controller is to predict the future 

expected state based on the system's current state and the acquired environmental information, 

and then generate control actions accordingly, ultimately driving the system to achieve the 
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desired behavior. In terms of control methods, model-based control relies on accurate modeling 

and simulation of the physical process to predict system behavior, while model-free control 

does not require an explicit dynamic model [4, 14], instead optimizing the control strategy 

through continuous interaction with the environment. 

In recent years, machine learning techniques, particularly deep reinforcement learning (Deep 

Reinforcement Learning, DRL), have been widely applied in control tasks such as industrial 

process control, autonomous driving decision-making, and robotic operations, due to their 

powerful ability to learn complex strategies in high-dimensional state spaces [7, 12]. However, 

although traditional artificial neural networks (ANNs) mimic the connections of biological 

neurons in structure, their computational units are essentially continuous numerical mappings. 

This fundamentally differs from the time-dependent computational mechanisms that biological 

neural systems rely on, which depend on spike transmission [13, 18-23]. To bridge this gap, 

Spiking Neural Networks (SNNs), as the "third generation of neural networks," have been 

proposed. SNNs use spike trains in the time domain to transmit information, more accurately 

simulating the way signals are transmitted between biological neurons [9, 10]. The advantage 

of SNNs lies not only in their ability to encode information in time, but also in their event-

driven sparse activation mechanism, which significantly improves energy efficiency, making 

them more suitable for embedded control scenarios with limited resources. 

To enable SNNs to learn effective control strategies, researchers have developed various 

reward-modulated synaptic plasticity mechanisms. For example: R-STDP (Reward-modulated 

STDP): Combines the spike-timing differences (STDP) of pre- and post-synaptic spikes with 

external reward signals to achieve fine-tuning optimization of the strategy.RM-STDP: Builds 

upon R-STDP by introducing a weight-dependent multiplicative modulation factor to enhance 

the stability of the training process and the generalization ability of the strategy [9, 24-27].TD-

STDP: Introduces the temporal difference error from reinforcement learning into the synaptic 

learning process and uses an eligibility trace mechanism to address the reward delay issue. 

Although mechanisms such as R-STDP, DA-STDP, and TD-STDP have initially established 

a connection between synaptic plasticity and environmental rewards, they still have limitations 

in terms of biological realism, effective handling of delayed rewards, and adapting to dynamic 

task feedback. R-STDP mainly controls and amplifies the synaptic update based on 

instantaneous reward signals, making it difficult to effectively cope with situations where 

reward signals are significantly delayed [16, 17]. The DA-STDP model only establishes a 

weight update mechanism between pre- and post-synaptic spikes and fails to capture delayed 
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rewards that appear several seconds after the behavior [28-32]. 

In contrast, DE-STDP (Dopamine-Eligibility STDP) shows greater potential in terms of 

biological plausibility and mechanism consistency [8, 33]. This mechanism uses dopamine (DA) 

concentration as a dynamic modulation factor and introduces the "eligibility trace" variable, 

coupling the local plasticity of STDP with the global reward signal reflected by dopamine 

concentration, giving synaptic weight changes "causal controllability" over time. This not only 

naturally simulates the core function of dopamine in reward-driven learning in biological neural 

systems, but also eliminates the need for external TD error calculation modules. The key feature 

of DE-STDP lies in its temporally separated weight update mechanism: STDP determines the 

possible direction of weight change based on spike timing differences (eligibility trace). The 

reward gating is then executed, with dopamine signals deciding whether these preset changes 

are actually implemented. This "trace-reward" pairing mechanism aligns with the time-scale 

differences between plasticity events and reward signals in biological systems [11, 15]. This 

two-stage regulation strategy makes DE-STDP advantageous in tasks involving sparse 

reinforcement signals, significant reward delays, or the need for local plasticity adjustments. 

Unlike current mainstream control methods based on reinforcement learning or deep neural 

networks, this study emphasizes exploring the synaptic learning rules and biological 

information processing mechanisms achievable by the nervous system itself, and focuses on the 

possibility of efficient, unsupervised balance learning in low-dimensional state spaces. The 

research not only validates the practical feasibility of DE-STDP in dynamic control tasks but 

also provides theoretical foundations and potential technical pathways for promoting brain-like 

computational paradigms in practical control systems. 

2. Methodology 

2.1 Network Structure 

To achieve reinforcement learning control for the inverted pendulum system, this study 

constructs a two-layer spiking neural network consisting of an input layer and an output layer. 

The network structure is simple, with clear connections, providing good biological 

interpretability and hardware deployment potential. 

The input layer consists of 24 Leaky Integrate-and-Fire neurons, which receive discretized 

encoded information of the environment's state. Specifically, the system's four-dimensional 

state variables (cart position, cart velocity, pole angle, and angular velocity) are discretized into 

several intervals and mapped to the 24 neurons using one-hot encoding. This ensures the 
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unambiguous transmission of state information and the capability for spike-based expression. 

The output layer contains 2 neurons, each representing one of the two discrete control actions 

(applying force to the left or applying force to the right). The network uses a fully connected 

structure, meaning each neuron in the input layer is synaptically connected to all neurons in the 

output layer. 

To reduce computational complexity and enhance the biological plausibility of neuron 

behavior, this study adopts the classic Leaky Integrate-and-Fire model for neuron modeling 

[37-39]. In this model, each neuron contains only one state variable—its membrane potential 

𝑉(𝑡) , and its dynamic behavior follows the differential equation: 

𝑑𝑉

𝑑𝑡
= −

𝑉(𝑡) − 𝑉_𝑟𝑒𝑠𝑡

τ_m
+

𝐼_𝑠𝑦𝑛(𝑡) + 𝐼_𝑒𝑥𝑡(𝑡)

𝐶_𝑚
 

In this model, V_rest represents the resting potential, τ_m is the membrane time constant, 

and 𝐶_𝑚  is the membrane capacitance. 𝐼_𝑒𝑥𝑡(𝑡) represents the externally injected current, 

primarily coming from the state perception input. 𝐼_𝑠𝑦𝑛(𝑡)  is the total synaptic current, 

triggered by synaptic inputs from within the network. When the membrane potential 𝑉(𝑡) 

exceeds the threshold voltage 𝑉_𝑡ℎ, the neuron is considered to fire a spike and undergoes a 

potential reset followed by a refractory period [4]. 

This network architecture fully integrates the fundamental characteristics of biological neural 

systems, while maintaining high engineering feasibility, providing a solid foundation for 

subsequent control learning based on reward-modulated spiking plasticity rules. 

2.2 State Discretization and One-Hot Encoding 

The spikes generated by the input neurons are used to encode the observation states of the 

inverted pendulum system. Each observation variable of the system (including the cart position 

𝑥、velocity 𝑣、pole angle 𝜃 and angular velocity 𝜔) is mapped to an integer index according 

to the following rule[32]：   

id_obs= {

0,

floor(
x-xmin

∆x
),

Nstates,obs-1,

                                                     

In this context ， ∆x  is the width of each interval, and 𝑜𝑏𝑠𝑚𝑖𝑛  and 𝑜𝑏𝑠𝑚𝑎𝑥  are the 

discretization limits for the variable. The total number of discrete states for each variable is 

given by：Nstates,obs=ceil(
x-xmin

∆x
) ，The combination of the four observation variables forms a 

complete state (idx,idv,idθ,idω)，The total number of states in the system is: 

obs ≤ 𝑜𝑏𝑠𝑚𝑖𝑛 

𝑜𝑏𝑠𝑚𝑖𝑛 < obs < 𝑜𝑏𝑠𝑚𝑎𝑥 

obs ≥ 𝑜𝑏𝑠𝑚𝑎𝑥 
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Nstates,total = Nstates,x*Nstates,v* Nstates,θ * Nstates,ω 

To achieve a unique representation for each state, each group of states is encoded by a set of 

ninput input neurons. Therefore, the total number of neurons in the input layer of the SNN is: 

Ninput neurons= Nstates,total * ninput 

When a specific state is input, only the ninput neurons corresponding to that state will spike, 

while all other neurons remain silent. This method is a classic example of one-hot encoding 

[30,34], which is commonly used in machine learning to represent categorical variables. For 

the discretization of the angle θ ： 

the central balanced region [-π/12, π/12]（equivalent to [-15°, 15°]）is divided into 10 

subintervals； 

The other unbalanced regions (such as [-π/2, -π/12] and [π/12, π/2]) are divided into coarser 

subintervals. 

This type of "sparse-dense-sparse" partitioning helps to enhance the system's resolution in 

the critical balanced region, thereby improving control performance. 

2.3 Reward Function Design 

Intuitively, the reward function should reflect the core objective of the control task, which is 

to maintain the pole in the upright position. Since the control outcome depends on the action 

selected and executed in the current state of the system, when an action guides the system 

toward a direction more favorable for achieving this goal, it should be assigned a positive 

reward. To enhance the Spiking Neural Network (SNN) controller's responsiveness to system 

dynamics, various reward functions are designed based on the evolution of the state. As the 

reward function progresses from R1 to R2，the perceptual variables introduced become more 

complex, and the feedback mechanism transitions from a single physical quantity to a 

composite trend judgment. This allows the system to become more sensitive to "balance 

tendency" during the training process [35,40]. The second reward function R1 is based on the 

trend of angular velocity changes between two time steps. 

                                  R1(ω
old

,ωnew)= {
1,

1,

-1,

                                                                              

In this context, the first term checks whether the direction of the angular velocity has reversed, 

which indicates that the system is attempting to correct the existing rotational trend. The second 

term encourages a reduction in angular velocity, reflecting the control action's effect in 

𝜔𝑜𝑙𝑑 ∗ 𝜔𝑛𝑒𝑤 < 0 

|𝜔𝑛𝑒𝑤| > |𝜔𝑜𝑙𝑑| 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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suppressing the rotation amplitude. If neither of these conditions is met, the action is considered 

ineffective, and a punitive reward of -1 is applied to the system. 

R2 builds upon R1 by further considering the trend in the direction of the angle to improve 

the system's overall ability to judge the return to equilibrium. It is defined as follows: 

        R2(ωold,ωnew,θold,θnew)= {

R1(ω
old

,ωnew),

1,

-1,

                                 （3）                          

The logic of this function emphasizes that when both the angular velocity and the angle 

direction point toward the "return to vertical" trend, a positive reward should be given; 

otherwise, a penalty is applied. Particularly in some cases, if the angle θold and the angular 

velocity ωold  have opposite signs, it indicates that the current angular velocity is actually 

decreasing the tilt angle, meaning the action itself has a positive effect. In such a case, simply 

using the "direction reversal or deceleration" criterion in R1  is insufficient to accurately 

evaluate the system's evolution. Therefore, R2  further introduces a check on the sign 

combination of θnew and ωnew:if the signs of θnew and ωnew are opposite, it indicates that the 

new state is still maintaining the ideal trend of "angular velocity correcting the angle," and a 

positive reward is given; otherwise, the action is considered detrimental to system balance, and 

a punitive reward of -1 is applied. Compared to R1, R2 can more accurately recognize the actual 

contribution of the agent's action to the "system's return to balance" and provides more 

directional feedback signals during the SNN learning process. 

2.4 DE-STDP 

Since the dynamics of intracellular processes triggered by STDP and dopamine (DA) are not 

yet fully understood, this paper proposes a simplified phenomenological model to characterize 

the basic mechanism by which DA regulates STDP plasticity. Referring to the method by i et 

al. (2004) [46], the paper uses two phenomenological variables to describe the state of each 

synapse: the synaptic weight (s) and the enzyme activity variable (c) closely related to synaptic 

plasticity, such as the autophosphorylation of CaMK-II (Lisman, 1989), oxidation reactions of 

PKC or PKA, or other slower biochemical processes. These processes together form the so-

called "synaptic tag" [38-41]. 

The basic dynamics of the model are described as follows: 

                                                         ċ=-
c

τc
+STDP(τ)δ(t-tpre/post)                                           

Here, ( \delta(t) ) is the Dirac delta function, which is triggered when the pre- or post-neuron 

fires at the times ( t_{\text{pre}} ) or ( t_{\text{post}} ), causing the variable ( c ) to be updated 

𝜃𝑛𝑒𝑤 ∗ 𝜔𝑜𝑙𝑑 > 0 

𝜃𝑛𝑒𝑤 ∗ 𝜔𝑜𝑙𝑑 ≤ 0 and 𝜃𝑛𝑒𝑤 ∗ 𝜔𝑛𝑒𝑤 < 0 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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according to the STDP curve (Figure 1b). To clarify the mathematical nature of the STDP 

mechanism, the following model function is used to describe the synaptic timing-dependent 

plasticity changes [2, 47]: 

                                                  W(∆t) {    
A

+
e

(-
∆t

τ+) 
 ,

-A
-
e

(
∆t

τ-) ,

                                                                    

∆t=ti-tj  represents the time difference between the postsynaptic and presynaptic neuron 

spikes, with A
+

 and A
-
 representing the maximum adjustment amplitudes for long-term 

potentiation (LTP) and long-term depression (LTD), respectively, and τ+ 、 τ-  being the 

corresponding time window constants. This function characterizes the update magnitude of the 

synapse at different time differences, reflecting the fundamental principles of STDP. 

The accumulated "plasticity potential" of the variable ccc only influences the synaptic weight 

sss when the DA concentration d > 0, enabling synaptic strengthening or weakening. Therefore, 

c(t) is considered as the "plasticity trace" or "eligibility trace" of the synapse, a concept 

introduced by Houk, Adams, and Barto (1995) [43-46]. Additionally, the dynamics of DA are 

described by the following equation: 

                                                    ḋ=-
d

τd
+DA(t)                                                 

Here, τd  is the dopamine (DA) uptake time constant, and DA(t) represents the DA input 

generated by dopaminergic neuron firing in brain structures such as the ventral tegmental area 

(VTA) and the substantia nigra compacta. In this study, τd = 0.01 s，s is set to reflect the rapid 

clearance of DA in physiological processes. To better simulate the phasic and tonic patterns of 

DA, and in line with the dopamine encoding logic shown in Figure 1, when the system receives 

a reward (reward = 1), DA(t) is set to 0.05 μM, corresponding to the phasic activation triggered 

by reward in Figure 1(a) or the activation after conditioned stimulus predicts a reward in Figure 

1(b). In the absence of a reward or with a negative reward (reward = -1), DA(t) is maintained 

at a baseline level of 0.001 μM, corresponding to tonic inhibition during the reward absence 

shown in Figure 1(c). At the same time, the background DA concentration is incorporated into 

the STDP weight update mechanism, represented by the following formula:： 

ṡ=c(d-d_baseline) 

Here, d_baseline = 0.005 μM represents the background DA level of the system. This 

mechanism makes the synaptic potentiation process more sensitive to increases in DA 

concentration, while it becomes less likely to produce reinforcement effects when the DA level 

if ∆𝑡 >0 

if ∆𝑡 <0 
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is below the baseline, helping to suppress the phenomenon of false reinforcement. 

 

Figure 1. dopamine reward rule 

In the inverted pendulum control system, the learning and reward mechanism is similar to 

the dopamine response logic shown in Figure 1. When the system successfully maintains 

balance, it corresponds to the reward activation in Figure 1(a), where dopamine activity in the 

neurons increases, reinforcing the successful balancing action. As the system learns, if the 

inverted pendulum has already learned the relationship between specific control signals and 

successful balance, these signals become conditioned stimuli, similar to the situation in Figure 

1(b), where neurons respond to the conditioned stimulus in advance, without waiting for the 

reward to arrive. Eventually, when the system can predict the reward through the conditioned 

stimulus, the neuron’s response becomes more stable, as shown in the trough in Figure 1(c), 

indicating that the system has learned how to efficiently and automatically maintain balance, 

without relying on every reward feedback. This learning process makes the inverted pendulum 

system more independent, enabling it to maintain balance more stably. 

In summary, the model reasonably integrates the millisecond-scale synapse-specific STDP 

with the second-scale behavioral feedback in terms of timescale differences, as reflected in the 

dopamine encoding of reward timing in Figure 1. Although there is currently no direct 

experimental evidence to prove or disprove this model, it provides a clear, testable theoretical 

framework for exploring the regulatory mechanism of DA in STDP. 
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3. Results    

3.1 Experimental Environment 

The Cart-Pole system is one of the most classic control problems in reinforcement learning 

and is widely used to evaluate the performance of various control algorithms. In recent years, 

many studies based on Spiking Neural Networks (SNNs) have also used this system as a 

platform for algorithm testing [35,42]. This task can be described as follows: a cart and a rod 

connected by a hinge form the system, with the rod being able to rotate only in the plane 

perpendicular to the ground. The cart (Fig. 2) moves along a frictionless horizontal track, and 

the control agent must choose an action in each frame: apply a force to the left or to the right. 

The chosen action will affect the dynamics of the entire system, with the control objective being 

to keep the rod upright for as long as possible without becoming unstable. 

In the MuJoCo simulation environment, decisions are made every 16 milliseconds. The 

observed system state includes: 

The position of the cart: x, in meters;     

The velocity of the cart: v = 
dv

dt
, in meters per second; 

The angle of the rod: θ, in radians (usually referenced to the vertical direction);     

The angular velocity of the rod: ω = 
dθ

dt
, in radians per second. 

The simulation will terminate when any of the following conditions are triggered: 

Rod tilt: The absolute value of the rod's angle exceeds 15°. 

Cart out of bounds: The position of the cart exceeds the track boundaries of -2.0 meters to 

2.0 meters. 

 

Figure 2. Cart and pole 
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3.2 Experimental Plan 

In this experiment, the initial network weights are set to small random values, and the Spiking 

Neural Network (SNN) learns online through continuous interaction with the environment. The 

system's learning objective is to continuously keep the rod within a specified angle threshold 

range, i.e., in the "balanced state," for each episode until the cart exceeds the track boundary, 

which is considered a successful episode. The training process consists of 200 episodes. To 

evaluate the model's stability and generalization ability within a local time window, this paper 

introduces a sliding window success rate metric. Specifically, it is defined as the proportion of 

episodes within a sliding window of fixed length (20 episodes) where the number of balanced 

steps exceeds 7000 steps. This metric is considered the probability of "success" within the 

window. It dynamically reflects the phase effectiveness of the strategy and the stability 

improvement during the convergence process. To comprehensively evaluate the performance 

of different STDP mechanisms, all employing the reward function defined in R2  ,the 

experiment compares the training performance of three plasticity rules: R-STDP (basic version), 

DA-STDP (with dopamine signal), and DE-STDP (with error and dopamine signal). 

3.3 Experimental Results and Analysis 

3.3.1 Evolution of Balance Steps During Training 

 

Figure 3. the comparison of performance for the three different STDP mechanisms 
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Fig. 3 shows the evolution of the number of balance steps per episode during the training 

process under three different STDP learning rules. R-STDP exhibits a significant training delay, 

with a notable improvement occurring only after around the 100th episode. In contrast, DA-

STDP and DE-STDP quickly converge around the 110th episode, with DE-STDP 

demonstrating a strong learning capability in the early stages and maintaining the highest 

stability after convergence. 

As shown in the figure, under DE-STDP modulation, the number of balance steps in the SNN 

during the CartPole task evolves over the course of training. In the initial phase (approximately 

the first 100 episodes), the SNN struggles to maintain the rod's stability, demonstrating a clear 

exploration phase. However, as training progresses, the synaptic connections are gradually 

optimized under DA modulation, and the system's balancing ability improves significantly. DE-

STDP outperforms both R-STDP and DA-STDP in terms of convergence speed and stability, 

while DA-STDP shows a higher success rate and better sustained balance ability compared to 

R-STDP in the later stages. 

3.3.2 Evolution of Maximum Angle During Training 

This experiment uses the "maximum angle per episode" as a core observation metric to 

compare the training performance of R-STDP, DA-STDP, and DE-STDP in reinforcement 

learning tasks. By analyzing the fluctuations of the maximum angle over 200 episodes, the 

convergence and stability of different mechanisms are evaluated. From the experimental curves, 

the performance differences among the three STDP mechanisms are significant: R-STDP 

remains within a large oscillation range of -15° to 15° throughout the 200 episodes, with the 

system continuously cycling between "exploration and loss of control." This occurs because it 

relies solely on the temporal correlation between pre- and post-synaptic neurons, without 

considering "reward delay" or "error feedback," leading to an inability to establish a stable 

"action-reward" relationship. Its variance is 112.39, indicating large fluctuations. 

DA-STDP, through dopamine encoding of the "reward prediction error," shows phase-wise 

convergence. The fluctuations in the first 50 episodes are similar to R-STDP, but after the 75th 

episode, the oscillation amplitude gradually decreases. After the 125th episode, it stabilizes 

between -5° and 10°. Although there is some convergence, due to the unresolved "temporal 

mismatch between actions and delayed rewards," there is still some fluctuation in the later 

stages. Its variance is 116.38, with reduced volatility compared to R-STDP. 

DE-STDP performs the best. There is some fluctuation in the first 50 episodes, but after the 

75th episode, the oscillation amplitude rapidly narrows. After the 125th episode, it stabilizes 



Zhixin Yan, Jin Li, Junbang Jiang, Shanmengdai Luo, Lifang Huang 

35 

between -5° and 5°, and approaches 0°, achieving stable angle control. Its variance is 55.62, 

indicating a more stable learning process. Overall, R-STDP performs the worst due to the lack 

of adaptation to reward delay, DA-STDP shows improvement but with limited convergence, 

and DE-STDP excels in both convergence speed and stability, providing a more efficient STDP-

based reinforcement learning framework. 

 

Figure 4. shows the comparison of performance for the three different STDP mechanisms, 

illustrating the fluctuations of the maximum angle over 200 episodes. 

3.4 Summary 

This paper presents and implements a biologically-inspired phenomenological modeling 

approach focused on dopamine-modulated, time-dependent synaptic plasticity mechanisms, 

aiming to explain how delayed rewards at the behavioral level can lead to adjustments in 

synaptic strengths at the neural synapse level. The model draws from the ideas proposed by 
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Izhikevich et al., with the core concept being the introduction of two synaptic variables: 

synaptic weight (s) and the eligibility trace variable (c). The model is biologically grounded, 

combining the weight potential change (STDP rule) triggered by spikes with the delay 

mechanism of reward signals. This method is particularly suited to address a common issue in 

reinforcement learning — the delay of rewards relative to the timing of neural firing behaviors. 

Additionally, the DA signal in the model is expressed in both baseline and phasic forms, with 

the sensitivity of weight adjustments under different DA concentrations enhancing the system's 

ability to differentiate environmental feedback and avoid erroneous reinforcement. This 

strategy effectively resolves the insensitivity to delayed rewards found in traditional STDP 

models, offering enhanced learning stability and biological plausibility. In conclusion, this 

approach provides a reasonable and experimentally testable modeling framework for synaptic 

learning mechanisms in neuromorphic reinforcement learning, especially suited for adaptive 

behavioral learning systems in delayed reinforcement scenarios. 
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