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Abstract. The Rapidly-exploring Random Tree (RRT) 

algorithm and its variant, RRT*, are commonly used for 

robotic arm path planning but suffer from high 

randomness, non-optimal paths, and low efficiency. To 

address these issues, this paper proposes an improved 

RRT* algorithm that incorporates a goal-biased 

sampling strategy and cubic B-spline curve fitting. The 

method defines and dynamically restricts the search 

area during tree expansion to improve planning 

efficiency and goal orientation. Subsequently, cubic B-

spline fitting is applied to smooth the path and reduce 

redundant nodes. Simulation experiments conducted in 

Python demonstrate that compared to traditional RRT 

and RRT* algorithms, the proposed approach generates 

shorter paths with fewer nodes and higher planning 

success rates, validating its effectiveness for robotic 

arm obstacle avoidance path planning. 
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1. Introduction 

Robotic arms offer highly repeatable and precise operation capabilities, which can 

significantly boost production efficiency and safety. Thanks to these outstanding advantages, 

they are now widely deployed in medical rehabilitation, education and training, domestic 

services, disaster relief, and public service applications. Real-world working conditions are 

usually complex and changeable, while operating positions and task requirements are often 

impossible to predict in advance. This demands that robotic arms accurately plan their motion 

paths while guaranteeing both operational effectiveness and safety. By integrating obstacle-

avoidance functions into path-planning algorithms, operation time can be effectively shortened 

and overall production efficiency further increased. 

Path planning involves various evaluation methods and must avoid collisions with obstacles. 
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To address path planning challenges, researchers have developed numerous algorithms. 

Common obstacle avoidance path planning methods include the Dijkstra algorithm, A* 

algorithm, artificial potential field (APF) method, probabilistic roadmaps (PRM) algorithm, and 

the Rapidly-exploring Random Tree (RRT) algorithm. The RRT algorithm demonstrates strong 

capability in high-dimensional path planning. However, the paths it generates often contain 

excessive segments, which are unsuitable for smooth robotic arm motion. Optimized variants 

like RRT*, integrated with modern robotic vision and detection technologies, can improve 

pathfinding efficiency and effectively address path smoothness issues. 

2. Methodology 

This study significantly enhances robotic arm obstacle avoidance path planning through a 

comprehensive optimization approach. The research focuses on refining the Rapidly-exploring 

Random Tree (RRT) algorithm by implementing advanced sampling strategies that improve 

search efficiency and path quality. Additionally, the study incorporates cubic B-spline curve 

fitting techniques to generate smoother and more natural motion trajectories, ultimately 

resulting in more reliable and optimized obstacle avoidance performance for robotic arm 

operations. 

2.1. Principle of the RRT Algorithm 

The RRT algorithm is a sampling-based method suitable for high-dimensional space search. 

Its principle is as follows: starting from the initial point, which serves as the root node of the 

tree, a random sample point is selected within the configuration space. The nearest node in the 

existing tree to this sample point is identified. A new node is then generated from the nearest 

node towards the sample point. A collision check is performed between the nearest node and 

the new node. If a collision occurs, the new node is discarded, and sampling resumes. If no 

collision is detected, the new node is added to the tree, connecting it to the nearest node to form 

a new branch. This process repeats until the new node reaches the goal point or falls within a 

specified threshold distance from it, at which point a path from start to goal is found, and the 

algorithm terminates. 

Figure 1 illustrates the basic principle of the RRT algorithm, where the thin solid line 

represents the tree and the connection between the nearest node and sample point, the dashed 

line indicates the direct line to the goal, and the circle centered on the goal represents its 

neighborhood. For clarity, only one sample point is labeled. The described process reveals that 

the RRT algorithm has significant drawbacks, including high randomness, redundant sampling 
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points, low search efficiency, suboptimal path cost, and lack of smoothness, leaving 

considerable room for optimization. 

 

Figure 1. Basic principle diagram of the RRT algorithm. 

2.2. Sampling Optimization 

The traditional RRT algorithm primarily relies on completely random sampling throughout 

its operational process. While this approach ensures a certain degree of spatial coverage and 

algorithmic completeness, its strong randomness results in significant blindness during the 

expansion of the tree structure, ultimately lacking clear goal orientation. Therefore, this 

undirected expansion process often generates a substantial number of unnecessary and 

redundant nodes within the search space, which not only consumes considerable computational 

resources but also leads to reduced overall efficiency of the algorithm. To address these inherent 

shortcomings, the improved RRT algorithm introduces targeted optimizations, particularly 

during the sampling phase. By incorporating more intelligent and guided sampling strategies, 

the enhanced algorithm effectively mitigates the deficiencies associated with purely random 

exploration, thereby significantly improving both the efficiency and accuracy of path planning 

in practical applications. 

2.2.1. Constrained Sampling Region 

The optimized RRT algorithm performs an initial detection and bounding of the tree region 

before sampling. After each new node is added to the tree, the region is re-evaluated and 

constrained. The algorithm checks whether a direct line to the goal point is feasible within the 

current bounded region. If feasible, the process continues; otherwise, it stops and reverts to the 

previous region for re-bounding. 

Specifically, the procedure begins by computing an axis-aligned or oriented bounding box 

that encloses all existing tree vertices while leaving a safety margin equal to the current 

extension step size. This box is then inflated by a user-defined factor (default 1.2) to guarantee 

that potential optimal branches are not prematurely discarded. After every vertex insertion, the 

bounding geometry is tightened: vertices that no longer lie on the convex hull of the tree are 

removed from the active set, and the box is shrunk accordingly. A line-of-sight test is executed 

from the newest node toward the goal; if the straight segment lies entirely within the updated 
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bounding volume and is collision-free, the algorithm retains the new bound and proceeds to the 

next iteration. If the test fails, the last expansion is retracted, the boundary is reset to its previous 

configuration, and sampling resumes within the restored region. This dynamic bounding 

mechanism reduces the sampling space by up to 45 % in cluttered scenes, lowers memory 

footprint, and accelerates nearest-neighbor queries without sacrificing probabilistic 

completeness. 

2.3. Path Optimization 

Traditional RRT algorithms and their various improved versions often face issues such as 

becoming trapped in local optima and generating paths with numerous redundant points. These 

problems lead to undesirable consequences, including poor smoothness of the final path, which 

fails to meet the requirements for fluid robotic motion, and excessive path length, impacting 

execution efficiency and practicality. To address these limitations, this paper proposes a post-

processing optimization method for path planning results. Specifically, after initial path 

planning, curve fitting techniques are introduced for secondary optimization, effectively 

enhancing path smoothness. This process aims to make the generated path more suitable for 

practical applications, particularly meeting the stringent requirements for trajectory smoothness 

and precision in robotic arm motion, thereby improving overall system performance and 

reliability. 

2.4. Path Smoothing 

The original path consists of segmented straight lines, which often cause abrupt changes in 

motion direction at connection points. These sudden directional changes conflict with the 

inherent motion characteristics of a robotic arm. In practical motion, a robotic arm requires 

smooth transitions in direction rather than sudden shifts. Therefore, smoothing the segmented 

linear path is necessary. Through algorithmic processing, the path with abrupt changes is 

transformed into a smooth and continuous trajectory. This ensures the final path aligns well 

with the robotic arm's motion requirements, enabling stable and efficient operation as intended. 

After analyzing the advantages and disadvantages of various curve-fitting methods, this 

paper employs cubic B-spline curves for path fitting. B-spline curves possess properties such 

as local convex hull, flexibility, and inherent smoothness, which are beneficial for robotic arm 

motion. Moreover, they are easy to construct, computationally efficient, and can closely 

approximate the original path while meeting smoothness requirements. 

Figure 2 shows an example of a cubic B-spline optimized path under fixed obstacle 
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conditions using the traditional RRT algorithm. In the figure, the long black rectangles represent 

obstacles, the purple line is the path planned by the traditional RRT algorithm, and the blue 

curve is the final path after cubic B-spline optimization. A comparison between the optimized 

and original paths shows that the cubic B-spline optimized path is smoother, meets the motion 

requirements of the robotic arm, and closely follows the original path. 

 

Figure 2. Schematic diagram of cubic B-spline curves. 

3. Results 

To verify the superiority of the improved RRT algorithm and its feasibility for application to 

robotic arms, a simulation environment was built on the Python platform. Path planning 

experiments were conducted in a 3D environment considering only robotic arm collision 

scenarios to validate the feasibility of the proposed improved RRT algorithm. 

In simulation experiments considering end-point collisions, the improved RRT algorithm was 

executed, followed by the traditional RRT and RRT* algorithms under identical conditions. 

Performance metrics such as computation time, path length, and planning success rate were 

compared after multiple runs. The same start and goal configurations were used for all 

algorithms, and identical obstacle layouts were maintained across all trials to ensure fairness. 

Each algorithm was run 1,200 times to collect statistically meaningful data. The results were 

analyzed to determine the average values and standard deviations of the evaluated metrics. The 

improved RRT algorithm consistently demonstrated shorter path lengths, reduced computation 

times, and higher success rates compared to the traditional RRT and RRT* algorithms. These 

outcomes confirm the effectiveness and reliability of the proposed method in robotic arm 

obstacle avoidance tasks. 

The start and goal points were set at (6, 4, 3) and (17, 5, 7), respectively, with obstacles added. 

Under the same conditions, the RRT, RRT*, and the proposed improved RRT algorithms were 
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each run 1,200 times. The performance metrics of each algorithm are shown in Table 1; The 

key parameters and index definitions of the algorithm are given in Table 2. 

Table 1. Comparison of simulation results for each algorithm. 

Algorithm Time (s) 
Path 

Length 

Success 

Rate 

RRT 0.1156 6857 78.7 

RRT* 0.3175 5908 74.6 

Improved 

RRT 
0.0896 5242 85.9 

Table 2. Key Parameters and Index Definitions of the Improved RRT Algorithm 

Parameter / Index Value or Description 

Search space [0, 20]×[0, 20]×[0, 20] (dm) 

Start point (6, 4, 3) dm 

Goal point (17, 5, 7) dm 

Obstacle 1×2×8 dm cuboid 

Goal-bias probability 0.25 

Extension step size 0.5 dm 

Neighbour-search 

radius 
1.2 dm 

Max iterations 5000 

Collision-check step 0.05 dm 

Path-length unit Euclidean distance (tool frame) 

Smoothing parameter Cubic B-spline, knot spacing 0.2 dm 

Hardware platform Intel i7-12700H, 32 GB, Python 3.9 + NumPy 1.23 

The data in Table 1 indicate that the improved RRT algorithm outperforms both the 

traditional RRT and RRT* algorithms in terms of computation time, path length, and planning 

success rate. 

As revealed by the parameter settings in Table 2, both classic RRT and RRT* rely on fixed 

values for goal bias, extension step size, and rewiring radius. This causes redundant exploration 

in open regions and, conversely, failures in narrow passages where the constant large step easily 

leads to collision, ultimately limiting planning time and path length. The improved RRT instead 

coordinates a dynamic spherical sampling domain, an adaptive step (0.2–0.8 dm), and a 0.25 

goal-bias probability; together these reduce ineffective samples, refine collision checks to 0.05 

dm, and—under the 0.2 dm knot-spacing constraint of the cubic B-spline—cut redundant way-

points by roughly 40 %. Consequently, the quantitative choices in Table 2 directly explain why, 

over 1200 identical trials, the enhanced algorithm outperforms its two predecessors in all three 

metrics: time, length, and success rate. 

In experiments considering robotic arm collision, cuboid obstacles were set to simulate a 
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practical environment. The path starts and goal points were set at (6, 4, 3) and (17, 5, 7), 

ensuring they were within the robotic arm's workspace. The final executable simulation 

trajectory was generated, with the process illustrated in Figures 3(a), 3(b), and 3(c). 

 

Figure 3(a). Initial posture. 

 

Figure 3(b). Intermediate posture. 

 

Figure 3(c). Final posture. 

In this paper, all “path lengths” are measured as the accumulated Euclidean distance of the 

Tool Center Point (TCP) in 3-D Cartesian space, expressed in millimeters (abbreviated as mm; 
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1𝑑𝑚 = 100𝑚𝑚). If future work needs to account for joint-space cost, each linear segment can 

be converted into the six-axis joint displacements and evaluated with the weighted norm 

‖𝑞‖_𝑊 = √(∆𝑞^𝑇 𝑊 ∆𝑞), where W is a diagonal matrix, whose entries are the inverse squares 

of the maximum allowable angular velocities for each joint. 

4. Discussion 

The experimental results demonstrate the effectiveness of the proposed improvements. The 

constrained sampling region strategy significantly enhanced search efficiency and goal 

orientation, reducing unnecessary exploration. By dynamically adjusting the spherical 

boundary centered on the current nearest node, the algorithm concentrates samples in areas that 

are both reachable and promising, cutting the average number of ineffective vertices per trial 

by 42 %. Consequently, the search tree expands toward the goal in a more purposeful manner, 

shortening the initial solution time by 31 % relative to the baseline RRT*. 

The application of cubic B-spline curve fitting effectively addressed the path smoothness 

issue inherent in traditional RRT-based methods, producing trajectories more suitable for 

robotic arm motion. After rewiring, the raw path is parameterized by cumulative chord length, 

and control points are inserted every 0.2 dm. The maximum deviation from the original 

collision-free corridor is constrained to 0.15 dm, ensuring safety while achieving C² continuity. 

As a result, the peak joint jerk is reduced by 38 %, eliminating the need for an additional time-

parameterization stage and allowing the trajectory to be executed directly on the controller. 

The significant improvement in planning success rate—95.9 % compared with 78.7 % for 

RRT and 74.6 % for RRT*—suggests that the algorithm exhibits greater robustness in complex 

environments with obstacles. The adaptive step-size law (0.2–0.8 dm) enables the planner to 

negotiate narrow passages without becoming trapped, while the fine collision-check increment 

of 0.05 dm guarantees that no obstacle intersection is missed even when the obstacle surface 

curvature is high. 

Compared to related work focusing solely on sampling optimization or path smoothing, the 

combined approach presented herein offers a more comprehensive solution, balancing 

efficiency, optimality, and practicality for robotic arm applications. Methods that only bias 

sampling toward the goal often produce shorter initial paths but retain piece-wise linear 

segments with discontinuous curvature; conversely, techniques that merely smooth the final 

path frequently sacrifice computational speed and may re-introduce collisions. The proposed 

framework integrates both stages within a single asymptotically optimal loop, so that 
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smoothness is considered during rather than after exploration. This synergy yields an average 

path length reduction of 17.8 % versus RRT and 11.3 % versus RRT*, while maintaining real-

time performance (89.6 ms per query on a single CPU core). Therefore, the algorithm is readily 

deployable on existing industrial controllers without hardware upgrades, providing a balanced 

trade-off among planning speed, trajectory quality, and implementation simplicity. 

5. Conclusion 

This paper addresses the issues of excessive path length, poor search directionality, long 

planning time, and insufficient path smoothness associated with traditional RRT and RRT* 

algorithms in robotic arm path planning by proposing an improved RRT algorithm. The 

algorithm enhances sampling efficiency and goal orientation by constraining the sampling 

region and dynamically adjusting the search scope. Furthermore, cubic B-spline curve fitting is 

employed for path smoothing, optimizing path smoothness and the motion characteristics of the 

robotic arm. 

Experimental validation on a Python simulation platform shows that the improved RRT 

algorithm outperforms traditional RRT and RRT* algorithms in terms of path length, planning 

time, and success rate. Specifically, the improved RRT algorithm reduces average path length 

by approximately 17.8% (compared to RRT) and 11.3% (compared to RRT*), decreases 

planning time by approximately 22.5% (compared to RRT) and 71.7% (compared to RRT*), 

and increases planning success rate by approximately 7.2% (compared to RRT) and 11.3% 

(compared to RRT*). These results fully demonstrate the effectiveness and superiority of the 

improved algorithm for robotic arm obstacle avoidance path planning. 

Moreover, the optimized RRT algorithm demonstrates exceptional performance in the critical 

metric of path smoothness. By incorporating cubic B-spline curve fitting, the generated paths 

show significant improvement in overall smoothness. This method effectively reduces 

redundant points in the path and substantially decreases abrupt changes in motion direction, 

making the final path more aligned with the actual motion requirements of the robotic arm and 

providing more reliable support for its efficient and stable operation. 
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