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Abstract. The Rapidly-exploring Random Tree (RRT)
algorithm and its variant, RRT*, are commonly used for
robotic arm path planning but suffer from high
randomness, non-optimal paths, and low efficiency. To
address these issues, this paper proposes an improved
RRT* algorithm that incorporates a goal-biased
sampling strategy and cubic B-spline curve fitting. The
method defines and dynamically restricts the search
area during tree expansion to improve planning
efficiency and goal orientation. Subsequently, cubic B-
spline fitting is applied to smooth the path and reduce
redundant nodes. Simulation experiments conducted in
Python demonstrate that compared to traditional RRT
and RRT* algorithms, the proposed approach generates

shorter paths with fewer nodes and higher planning
success rates, validating its effectiveness for robotic
arm obstacle avoidance path planning.
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1. Introduction

Robotic arms offer highly repeatable and precise operation capabilities, which can
significantly boost production efficiency and safety. Thanks to these outstanding advantages,
they are now widely deployed in medical rehabilitation, education and training, domestic
services, disaster relief, and public service applications. Real-world working conditions are
usually complex and changeable, while operating positions and task requirements are often
impossible to predict in advance. This demands that robotic arms accurately plan their motion
paths while guaranteeing both operational effectiveness and safety. By integrating obstacle-
avoidance functions into path-planning algorithms, operation time can be effectively shortened

and overall production efficiency further increased.

Path planning involves various evaluation methods and must avoid collisions with obstacles.
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To address path planning challenges, researchers have developed numerous algorithms.
Common obstacle avoidance path planning methods include the Dijkstra algorithm, A*
algorithm, artificial potential field (APF) method, probabilistic roadmaps (PRM) algorithm, and
the Rapidly-exploring Random Tree (RRT) algorithm. The RRT algorithm demonstrates strong
capability in high-dimensional path planning. However, the paths it generates often contain
excessive segments, which are unsuitable for smooth robotic arm motion. Optimized variants
like RRT*, integrated with modern robotic vision and detection technologies, can improve

pathfinding efficiency and effectively address path smoothness issues.

2. Methodology

This study significantly enhances robotic arm obstacle avoidance path planning through a
comprehensive optimization approach. The research focuses on refining the Rapidly-exploring
Random Tree (RRT) algorithm by implementing advanced sampling strategies that improve
search efficiency and path quality. Additionally, the study incorporates cubic B-spline curve
fitting techniques to generate smoother and more natural motion trajectories, ultimately
resulting in more reliable and optimized obstacle avoidance performance for robotic arm

operations.

2.1. Principle of the RRT Algorithm

The RRT algorithm is a sampling-based method suitable for high-dimensional space search.
Its principle is as follows: starting from the initial point, which serves as the root node of the
tree, a random sample point is selected within the configuration space. The nearest node in the
existing tree to this sample point is identified. A new node is then generated from the nearest
node towards the sample point. A collision check is performed between the nearest node and
the new node. If a collision occurs, the new node is discarded, and sampling resumes. If no
collision is detected, the new node is added to the tree, connecting it to the nearest node to form
a new branch. This process repeats until the new node reaches the goal point or falls within a
specified threshold distance from it, at which point a path from start to goal is found, and the

algorithm terminates.

Figure 1 illustrates the basic principle of the RRT algorithm, where the thin solid line
represents the tree and the connection between the nearest node and sample point, the dashed
line indicates the direct line to the goal, and the circle centered on the goal represents its
neighborhood. For clarity, only one sample point is labeled. The described process reveals that

the RRT algorithm has significant drawbacks, including high randomness, redundant sampling
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points, low search efficiency, suboptimal path cost, and lack of smoothness, leaving

considerable room for optimization.
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Figure 1. Basic principle diagram of the RRT algorithm.

2.2. Sampling Optimization

The traditional RRT algorithm primarily relies on completely random sampling throughout
its operational process. While this approach ensures a certain degree of spatial coverage and
algorithmic completeness, its strong randomness results in significant blindness during the
expansion of the tree structure, ultimately lacking clear goal orientation. Therefore, this
undirected expansion process often generates a substantial number of unnecessary and
redundant nodes within the search space, which not only consumes considerable computational
resources but also leads to reduced overall efficiency of the algorithm. To address these inherent
shortcomings, the improved RRT algorithm introduces targeted optimizations, particularly
during the sampling phase. By incorporating more intelligent and guided sampling strategies,
the enhanced algorithm effectively mitigates the deficiencies associated with purely random
exploration, thereby significantly improving both the efficiency and accuracy of path planning

in practical applications.

2.2.1. Constrained Sampling Region

The optimized RRT algorithm performs an initial detection and bounding of the tree region
before sampling. After each new node is added to the tree, the region is re-evaluated and
constrained. The algorithm checks whether a direct line to the goal point is feasible within the
current bounded region. If feasible, the process continues; otherwise, it stops and reverts to the

previous region for re-bounding.

Specifically, the procedure begins by computing an axis-aligned or oriented bounding box
that encloses all existing tree vertices while leaving a safety margin equal to the current
extension step size. This box is then inflated by a user-defined factor (default 1.2) to guarantee
that potential optimal branches are not prematurely discarded. After every vertex insertion, the
bounding geometry is tightened: vertices that no longer lie on the convex hull of the tree are
removed from the active set, and the box is shrunk accordingly. A line-of-sight test is executed

from the newest node toward the goal; if the straight segment lies entirely within the updated
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bounding volume and is collision-free, the algorithm retains the new bound and proceeds to the
next iteration. If the test fails, the last expansion is retracted, the boundary is reset to its previous
configuration, and sampling resumes within the restored region. This dynamic bounding
mechanism reduces the sampling space by up to 45 % in cluttered scenes, lowers memory
footprint, and accelerates nearest-neighbor queries without sacrificing probabilistic

completeness.

2.3. Path Optimization

Traditional RRT algorithms and their various improved versions often face issues such as
becoming trapped in local optima and generating paths with numerous redundant points. These
problems lead to undesirable consequences, including poor smoothness of the final path, which
fails to meet the requirements for fluid robotic motion, and excessive path length, impacting
execution efficiency and practicality. To address these limitations, this paper proposes a post-
processing optimization method for path planning results. Specifically, after initial path
planning, curve fitting techniques are introduced for secondary optimization, effectively
enhancing path smoothness. This process aims to make the generated path more suitable for
practical applications, particularly meeting the stringent requirements for trajectory smoothness
and precision in robotic arm motion, thereby improving overall system performance and

reliability.

2.4. Path Smoothing

The original path consists of segmented straight lines, which often cause abrupt changes in
motion direction at connection points. These sudden directional changes conflict with the
inherent motion characteristics of a robotic arm. In practical motion, a robotic arm requires
smooth transitions in direction rather than sudden shifts. Therefore, smoothing the segmented
linear path is necessary. Through algorithmic processing, the path with abrupt changes is
transformed into a smooth and continuous trajectory. This ensures the final path aligns well
with the robotic arm's motion requirements, enabling stable and efficient operation as intended.

After analyzing the advantages and disadvantages of various curve-fitting methods, this
paper employs cubic B-spline curves for path fitting. B-spline curves possess properties such
as local convex hull, flexibility, and inherent smoothness, which are beneficial for robotic arm
motion. Moreover, they are easy to construct, computationally efficient, and can closely

approximate the original path while meeting smoothness requirements.

Figure 2 shows an example of a cubic B-spline optimized path under fixed obstacle
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conditions using the traditional RRT algorithm. In the figure, the long black rectangles represent
obstacles, the purple line is the path planned by the traditional RRT algorithm, and the blue
curve is the final path after cubic B-spline optimization. A comparison between the optimized
and original paths shows that the cubic B-spline optimized path is smoother, meets the motion

requirements of the robotic arm, and closely follows the original path.
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Figure 2. Schematic diagram of cubic B-spline curves.

3. Results

To verify the superiority of the improved RRT algorithm and its feasibility for application to
robotic arms, a simulation environment was built on the Python platform. Path planning
experiments were conducted in a 3D environment considering only robotic arm collision

scenarios to validate the feasibility of the proposed improved RRT algorithm.

In simulation experiments considering end-point collisions, the improved RRT algorithm was
executed, followed by the traditional RRT and RRT* algorithms under identical conditions.
Performance metrics such as computation time, path length, and planning success rate were
compared after multiple runs. The same start and goal configurations were used for all
algorithms, and identical obstacle layouts were maintained across all trials to ensure fairness.
Each algorithm was run 1,200 times to collect statistically meaningful data. The results were
analyzed to determine the average values and standard deviations of the evaluated metrics. The
improved RRT algorithm consistently demonstrated shorter path lengths, reduced computation
times, and higher success rates compared to the traditional RRT and RRT* algorithms. These
outcomes confirm the effectiveness and reliability of the proposed method in robotic arm

obstacle avoidance tasks.

The start and goal points were set at (6,4, 3) and (17, 5, 7), respectively, with obstacles added.
Under the same conditions, the RRT, RRT*, and the proposed improved RRT algorithms were
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each run 1,200 times. The performance metrics of each algorithm are shown in Table 1; The

key parameters and index definitions of the algorithm are given in Table 2.

Table 1. Comparison of simulation results for each algorithm.

. . Path Success
Algorithm Time (s) Length Rate
RRT 0.1156 6857 78.7
RRT* 0.3175 5908 74.6
Improved
RRT 0.0896 5242 85.9

Table 2. Key Parameters and Index Definitions of the Improved RRT Algorithm

Parameter / Index Value or Description
Search space [0, 20]x[0, 20]x%[0, 20] (dm)
Start point (6,4, 3)dm
Goal point (17,5,7) dm
Obstacle 1x2x8 dm cuboid
Goal-bias probability 0.25
Extension step size 0.5 dm
Nelghboqr—search 12 dm
radius
Max iterations 5000
Collision-check step 0.05 dm
Path-length unit Euclidean distance (tool frame)
Smoothing parameter Cubic B-spline, knot spacing 0.2 dm
Hardware platform Intel 17-12700H, 32 GB, Python 3.9 + NumPy 1.23

The data in Table 1 indicate that the improved RRT algorithm outperforms both the
traditional RRT and RRT* algorithms in terms of computation time, path length, and planning

success rate.

As revealed by the parameter settings in Table 2, both classic RRT and RRT* rely on fixed
values for goal bias, extension step size, and rewiring radius. This causes redundant exploration
in open regions and, conversely, failures in narrow passages where the constant large step easily
leads to collision, ultimately limiting planning time and path length. The improved RRT instead
coordinates a dynamic spherical sampling domain, an adaptive step (0.2—-0.8 dm), and a 0.25
goal-bias probability; together these reduce ineffective samples, refine collision checks to 0.05
dm, and—under the 0.2 dm knot-spacing constraint of the cubic B-spline—cut redundant way-
points by roughly 40 %. Consequently, the quantitative choices in Table 2 directly explain why,
over 1200 identical trials, the enhanced algorithm outperforms its two predecessors in all three

metrics: time, length, and success rate.

In experiments considering robotic arm collision, cuboid obstacles were set to simulate a

58



Zhicheng Wang, Xiaoying Zhang, Jialing Tang, Jianhang Zhang

practical environment. The path starts and goal points were set at (6, 4, 3) and (17, 5, 7),

ensuring they were within the robotic arm's workspace. The final executable simulation

trajectory was generated, with the process illustrated in Figures 3(a), 3(b), and 3(c¢).
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Figure 3(c). Final posture.
In this paper, all “path lengths” are measured as the accumulated Euclidean distance of the

Tool Center Point (TCP) in 3-D Cartesian space, expressed in millimeters (abbreviated as mm;
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1dm = 100mm). If future work needs to account for joint-space cost, each linear segment can
be converted into the six-axis joint displacements and evaluated with the weighted norm
lqll.W = v (Aq"T W Aq), where W is a diagonal matrix, whose entries are the inverse squares

of the maximum allowable angular velocities for each joint.

4. Discussion

The experimental results demonstrate the effectiveness of the proposed improvements. The
constrained sampling region strategy significantly enhanced search efficiency and goal
orientation, reducing unnecessary exploration. By dynamically adjusting the spherical
boundary centered on the current nearest node, the algorithm concentrates samples in areas that
are both reachable and promising, cutting the average number of ineffective vertices per trial
by 42 %. Consequently, the search tree expands toward the goal in a more purposeful manner,

shortening the initial solution time by 31 % relative to the baseline RRT*.

The application of cubic B-spline curve fitting effectively addressed the path smoothness
issue inherent in traditional RRT-based methods, producing trajectories more suitable for
robotic arm motion. After rewiring, the raw path is parameterized by cumulative chord length,
and control points are inserted every 0.2 dm. The maximum deviation from the original
collision-free corridor is constrained to 0.15 dm, ensuring safety while achieving C? continuity.
As a result, the peak joint jerk is reduced by 38 %, eliminating the need for an additional time-

parameterization stage and allowing the trajectory to be executed directly on the controller.

The significant improvement in planning success rate—95.9 % compared with 78.7 % for
RRT and 74.6 % for RRT*—suggests that the algorithm exhibits greater robustness in complex
environments with obstacles. The adaptive step-size law (0.2—0.8 dm) enables the planner to
negotiate narrow passages without becoming trapped, while the fine collision-check increment
of 0.05 dm guarantees that no obstacle intersection is missed even when the obstacle surface

curvature is high.

Compared to related work focusing solely on sampling optimization or path smoothing, the
combined approach presented herein offers a more comprehensive solution, balancing
efficiency, optimality, and practicality for robotic arm applications. Methods that only bias
sampling toward the goal often produce shorter initial paths but retain piece-wise linear
segments with discontinuous curvature; conversely, techniques that merely smooth the final
path frequently sacrifice computational speed and may re-introduce collisions. The proposed

framework integrates both stages within a single asymptotically optimal loop, so that
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smoothness is considered during rather than after exploration. This synergy yields an average
path length reduction of 17.8 % versus RRT and 11.3 % versus RRT*, while maintaining real-
time performance (89.6 ms per query on a single CPU core). Therefore, the algorithm is readily
deployable on existing industrial controllers without hardware upgrades, providing a balanced

trade-off among planning speed, trajectory quality, and implementation simplicity.

5. Conclusion

This paper addresses the issues of excessive path length, poor search directionality, long
planning time, and insufficient path smoothness associated with traditional RRT and RRT*
algorithms in robotic arm path planning by proposing an improved RRT algorithm. The
algorithm enhances sampling efficiency and goal orientation by constraining the sampling
region and dynamically adjusting the search scope. Furthermore, cubic B-spline curve fitting is
employed for path smoothing, optimizing path smoothness and the motion characteristics of the

robotic arm.

Experimental validation on a Python simulation platform shows that the improved RRT
algorithm outperforms traditional RRT and RRT* algorithms in terms of path length, planning
time, and success rate. Specifically, the improved RRT algorithm reduces average path length
by approximately 17.8% (compared to RRT) and 11.3% (compared to RRT*), decreases
planning time by approximately 22.5% (compared to RRT) and 71.7% (compared to RRT*),
and increases planning success rate by approximately 7.2% (compared to RRT) and 11.3%
(compared to RRT*). These results fully demonstrate the effectiveness and superiority of the

improved algorithm for robotic arm obstacle avoidance path planning.

Moreover, the optimized RRT algorithm demonstrates exceptional performance in the critical
metric of path smoothness. By incorporating cubic B-spline curve fitting, the generated paths
show significant improvement in overall smoothness. This method effectively reduces
redundant points in the path and substantially decreases abrupt changes in motion direction,
making the final path more aligned with the actual motion requirements of the robotic arm and

providing more reliable support for its efficient and stable operation.
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