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1. Introduction

Abstract. Honey pot contract operation code sequences
exhibit strong concealment, significantly increasing
detection complexity. To address this, this study
proposes a fine-grained detection method based on
LSTM and Fuzzing. By analyzing frequency
differences across operation codes in different honey
pot contract types, we calculate their occurrence rates
and assign high initial weights to high-frequency
operation codes. The weight mechanism is then
integrated into the LSTM model to calculate operational
code contribution levels and importance scores,
enabling extraction of high-scoring critical operation
codes. The research employs Fuzzing fuzz testing
technology to generate initial test case sets and defines
their deconstruction methods. Using case identifiers and
functional codes, we validate interaction logic
vulnerabilities in honey pot contracts through mutation
factor probability matrices. By constructing source code
graph structures using critical operation codes and
interaction logic vulnerabilities, we update and
aggregate vector nodes with global accumulation
pooling functions to generate graph-level vectors.
These graph-level vectors are then fed into graph
attention networks, with cross-entropy loss functions
jointly determining honey pot contract types. Test
results demonstrate that the proposed method achieves
sub-3 false positives for six honey pot contract types,
demonstrating high precision in fine-grained detection.

Keywords: LSTM Model; Fuzzing Testing;, Smart
Contract Honeypot, Fine-grained Detection

Honeypot contracts, a novel type of smart contract emerging in recent years, differ from

traditional vulnerability contracts and stealth contracts. They employ deceptive tactics like
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fabricated funding pools and conditional locking mechanisms to infiltrate target users and
devices, ultimately stealing assets or tampering with data, posing significant security risks.
Current detection methods primarily rely on control flow matching, analyzing logical trap
timing patterns through symbolic code execution and identifying vulnerabilities via state space
evolution. However, this approach fails to comprehensively cover attack paths, resulting in high
false positive rates. Therefore, there is an urgent need for a high-precision detection method to

mitigate honeypot contract attacks.

In current research on contract vulnerability detection, scholars have proposed various
methodologies. Specifically, Reference [1] employs entity-relation-entity triplet embedding to
extract variable features, combines neural networks with bidirectional long short-term memory
networks to model global temporal dependencies, and utilizes SoftMax classifiers for
vulnerability classification. While this approach visualizes critical code segments through
weight distribution for rapid root cause identification, it struggles with dynamic logic
processing and often misses context-sensitive vulnerabilities. Reference [2] constructs program
dependency graphs based on contract features, concatenates semantic features via graph
convolutional networks for vulnerability classification. This method effectively reduces sample
data size while preserving critical code segments and lowering computational complexity.
However, its slicing granularity control introduces redundant information that disrupts key

dependency chains, thereby increasing detection errors.

Furthermore, most existing research focuses on general vulnerability detection, lacking
specialized analysis methods for the unique logical traps and interactive deception mechanisms
of honeypot contracts. Honeypot contracts often embed covert malicious logic within normal
business processes, making it difficult for traditional static analysis and dynamic execution
methods to capture their coordinated attack behaviors across contracts and transactions.
Therefore, a hybrid detection framework combining temporal modeling and fuzz testing has

become an important direction for improving detection accuracy.

Building on the aforementioned research context, this study employs LSTM and Fuzzing
techniques to conduct granular detection of honeypot contracts, thereby providing a security

solution with low false positives and high coverage for the blockchain ecosystem.

2. Technical Framework and Research Overview

2.1 Evolution of Smart Contract Security Detection Techniques

The field of smart contract security detection has evolved from early rule-based pattern
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matching into a comprehensive system integrating static analysis, dynamic testing, and machine
learning. Static analysis methods, such as symbolic execution and formal verification, can
systematically traverse the contract state space but face the path explosion problem when
dealing with complex control flows and external calls. Dynamic analysis methods, particularly
fuzzing, trigger runtime exceptions by generating random or semi-structured inputs, yet their
effectiveness heavily depends on the design of initial seeds and mutation strategies. In recent
years, data-driven methods represented by deep learning have provided a new paradigm for
contract security analysis. These methods can automatically learn vulnerability representation
patterns from vast amounts of contract code, significantly enhancing the automation and

generalization capabilities of detection.

2.2 Key Advances in Deep Learning for Contract Security Analysis

In the process of applying deep learning to contract security, model architectures have
evolved from sequence models to graph neural networks. Sequence models represented by
LSTM and BiLSTM can effectively capture long-range dependencies in opcode sequences but
have limitations when processing structured semantics across functions and contracts. Graph
Neural Networks (GNNs), by abstracting contracts into control flow graphs, data flow graphs,
or hybrid graph structures, better preserve the topological semantics of code and have
demonstrated excellent performance in detecting vulnerabilities such as reentrancy and
improper access control. However, most existing methods treat contracts as static code for
analysis and fail to fully consider the dynamic nature of interactive logic and state evolution,

which is precisely the core mechanism by which honeypot contracts achieve deception.

2.3 Special Challenges in Honeypot Contract Detection

The detection of honeypot contracts faces three core challenges:

(1) High Concealment: Malicious logic is often disguised within normal business code,
harmless state variables, or compiler features, making it difficult to identify through syntax or

simple patterns.

(2) Interaction Dependency: Attack triggers usually depend on specific sequences of
external calls or state conditions; single-dimensional code analysis cannot reconstruct the

complete attack chain.

(3) Adversarial Evolution: Honeypot designers actively evade known detection patterns
(e.g., replacing high-frequency opcodes, control flow obfuscation), requiring detection methods

to possess continuous adaptation capabilities.
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Current methods based on control flow matching or symbolic execution can identify some
logic traps but struggle to achieve high-precision, fine-grained classification and root cause

localization of honeypots.

2.4 Overall Technical Framework of This Paper
To address the aforementioned challenges, this paper proposes a three-layer integrated fine-
grained detection framework of "Feature Screening - Interaction Verification - Graph Structure

Classification," as shown in Figure 1.

Input: Contract Bytecode Sequence

A 4
Weighted LSTM-based Key Opcode Screening Module (KOLSTM)

v

Risk-Guided Fuzzing for Interactive Logic Vulnerability Mining

A 4

Graph Structure Construction & Graph Attention Network Classification (GAT)

v

Output: Honeypot Contract Type & Fine-Grained Results

Figure 1. The Proposed Fine-Grained Honeypot Contract Detection Framework

The core innovations of this framework are:

(1) Introducing an opcode weighting mechanism that combines frequency statistics with

semantic importance to enhance LSTM's sensitivity to potential malicious code.

(2) Designing a risk-guided fuzzing strategy that uses key opcodes to direct mutation,

enabling in-depth testing of interactive logic.

(3) Constructing an "opcode-vulnerability" association graph that integrates static code
features with dynamic interactive behaviors, achieving end-to-end fine-grained classification

through a Graph Attention Network.

2.5 Comparative Advantages Over Existing Methods

Compared to traditional methods, the proposed framework offers the following advantages:

(1) Comprehensive Coverage: It combines code sequence analysis with interactive behavior
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verification, avoiding blind spots inherent in single-perspective detection.

(2) Strong Adaptability: Through dynamic weight adjustment and feedback-driven fuzzing,

it can adapt to the adversarial evolution of honeypot contracts.

(3) High Interpretability: The processes of key opcode screening and graph structure
construction provide traceable semantic evidence for detection results, aiding security analysts

in root cause localization.

(4) This framework provides a closed-loop solution for honeypot contract detection,
spanning from feature extraction and behavior verification to structural classification, laying a
theoretical foundation for the method design and experimental validation in subsequent

chapters.

3. Design of Fine-grained Detection Method for Honeycomb
Contract

3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM
Since different types of honeypot contracts contain distinct operation codes with varying

frequencies, we first calculate the average occurrence frequency of each operation code within

the contracts, then assign higher initial weights to high-frequency operation codes [3]. The

calculation formula is as follows:

fo = (al1B8) + (gllv)

L Olell
14 prO

In the above expression, the notations are defined as follows: a,, denotes the base distribution
of operation p in the contract, f denotes the null string used for encoding in the contract, g
denotes the actual hidden code, v denotes the state variable, f,, denotes the occurrence count of
operation p, d denotes the call address of the target account, e denotes the conditional jump
instruction, W, denotes the hidden state update parameter, and w,, denotes the initial weight of
operation p.

The weight initialization strategy draws inspiration from the TF-IDF concept in information
retrieval, adapted for opcode sequence analysis. In honeypot contracts, frequently appearing
opcodes (e.g., CALL, SELFDESTRUCT, JUMPI) are often associated with sensitive behaviors
such as fund transfer and conditional jumps, yet their importance varies significantly across

contract types. Therefore, this paper considers not only frequency but also introduces a
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“contract discriminability” factor to prevent commonly occurring opcodes (e.g., PUSH, DUP)
from dominating model attention due to their universal high frequency. In practice, if an opcode
appears frequently across most contracts, its initial weight is appropriately attenuated, thereby

focusing more on opcode patterns distinctive to honeypots.

In conventional Long Short-Term Memory (LSTM) models, an operation code weight
mechanism 1is introduced to develop an enhanced long short-term memory network called
KOLSTM. By implementing a weighted update strategy for input and hidden gates, the system
calculates the weight contribution of high-frequency operation codes, as shown in the following

formula:

D
Yp = sigmod (log <D1 n 1) u+ wp)

In the above expression, D denotes the opcode vector input at the current moment, D, refers
to the output of the forgetting gate, u represents the proportion of the cell state output relative
to the hidden state, and y,, stands for the weight contribution quantization value corresponding

to operation p.
The importance score is calculated based on the weight contribution of the operation code
during model training, as shown in the following formula:

p=1Yp * !
Ay = —F———
Bh —Jo
In the above expression, n denotes the number of contracts, I represents the indicator
function, 6, represents the word vector expression of the weighted average operation code; j,
represents the adjustable parameter matrix; and a, represents the importance evaluation score
of the operation code p.

Based on the importance score of operation codes, the S top-performing codes are selected
as the construction operation codes, followed by vulnerability mining in contract interaction

logic.

3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic
Fuzzing is a fuzz testing technique for general network protocols. In honeypot contract
detection, it selects key operation codes based on their characteristics to test and identify

interaction logic vulnerabilities.

Based on the risk level defined by input space and key operation codes, the initial test case

set is generated. This set consists of three parts: message header, function code, and data code
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[4]. The decomposition method is shown in Table 1.

Table 1. Test Case Decomposition Method

message field span
transaction identifier Unlimited matching values
protocol identifier The default value is 0
command identifier The default value is 0
fill character 15
element ID 1~256
option code 0~255
state changing code 1~535
element ID 1~17
Length identifier 0~535

To reduce the selection frequency of test data objects and simplify the computational process,
the variation factors and their values of each identifier and function code in the message field
are merged. Based on the characteristics of normalized value ranges, the probability of variation
factors for identifiers and function codes is determined [5]. As shown in the following formula:

b(y, = 0]x,)
P = (po, b1, Pm) =

b(yr = aplxu)
In the above expression, p,, denotes the mutation probability of the m-th function code, b

represents a random variable, y, stands for the numerical mapping of the A-th identifier,
x,, refers to the input message template, y. denotes the numerical mapping of the r-th function
code, a, represents the importance evaluation value of opcode p, and P denotes the mutation
probability matrix.

To improve the path coverage of fuzzing tests, this paper designs a risk-guided directional
mutation algorithm. The algorithm first marks the test message fields containing key opcodes
based on their importance scores. Subsequently, a hierarchical mutation strategy is adopted:
high-risk fields (e.g., state confusion codes, option negotiation codes) undergo multiple rounds
of random mutation and boundary value testing, while medium- and low-risk fields undergo
lightweight random perturbations. Additionally, a feedback mechanism is introduced, where
code coverage and state change records after each test execution are used as inputs to
dynamically adjust the mutation factor probability matrix, enabling iterative deep exploration

of potential honeypot logic. The algorithm flow is as shown in Algorithm 1.

By analyzing the correlation distribution among public codes, custom codes, and reserved
codes in the testing protocol, we deploy a blockchain-based testing environment. In this

environment, the mutation probability matrix of function codes and identifiers serves as the
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input combination for triggering anomalies. Initial test cases are used to validate vulnerabilities.
If the data fields of all identifiers and function codes in the message domain display as "empty",
it confirms the presence of honeypot logic in the contract, requiring further detection of

vulnerability types in the honeypot contract.

Input: Initial test case set T, key opcode list K, mutation rounds R
Output: Vulnerability-triggering test case set V

Step 1. Initialize vulnerability-triggering test case set: V «— @
Step 2. For each mutation round r =1 to R do

Step 3. For each test case test € T do

Step 4. Identify overlapping message fields:

Let F<sub>overlap</sub> be the set of message fields in test that contain opcodes
from K

Step 5. For each field f € F<sub>overlap</sub>, select mutation strategy:
strategy(f) = random_mutation if risk(f) = high
strategy(f) = boundary testing if risk(f) = high
strategy(f) = light perturbation if risk(f) € {medium, low}
where risk(f) is determined by the opcode importance score

Step 6. Generate new test case: test' = mutate(test, strategy(f))

Step 7. Execute test' in local chain deployment environment

Step 8. If execution triggers abnormal state or "empty data field":
V «— VU {test'}

Step 9. End for

Step 10. Update mutation factor probability matrix based on coverage feedback:

M<sub>mut</sub><sup>(r+1)</sup>«—update matrix(M<sub>mut</sub><sup>(r)
</sup>, coverage data)

Step 11. End for
Step 12. Return V

Algorithm 1. Risk-Guided Fuzzing Mutation Algorithm for Honeypot Contract Detection.

3.3 Fine-grained Detection of Honey Pot Contracts
3.3.1 Overview of the overall testing process

The complete detection process, from opcode filtering to graph attention network
classification, forms a closed-loop chain, as illustrated in Figure 2. The first step involves
filtering key opcodes using an improved KOLSTM model, while generating suitable test cases
with the help of Fuzzing technology to explore potential interaction logic vulnerabilities in the
contract, providing core feature support for subsequent detection. The second step involves
using the filtered key opcodes as nodes in a graph structure, and the discovered interaction logic

vulnerabilities as connecting edges between nodes, to construct a source code graph structure
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that accurately represents the core features of the contract. The third step involves updating
each node vector based on the structural relationship matrix between nodes and edges, and then
aggregating all updated node vectors through a global accumulative pooling function to
generate a graph-level vector that comprehensively reflects the overall characteristics of the
contract. The fourth step involves inputting the graph-level vector into the fully connected layer
of the graph attention network, combining it with the cross-entropy loss function to minimize
the deviation between the predicted type and the actual type, completing model training and

precise classification of honeypot contract types, ultimately achieving fine-grained detection.

Closed-Loop Iterative Optimization
Feedback Classification Result C Opt.lmlze Preceding Modples
o » - Adjust KOLSTM screening &
- Analyze classification errors .
Fuzzing
Stepl: Key Feature Mining
1.1 Key Opcode Screening 1.2 Vulnerability Logic Mining

- Improved KOLSTM model —— - Fuzzing technology generates test cases
- Output: Key opcode set O - Output: Interaction vulnerability set L

!

Step2: Contract Source Code Graph Construction

2.1 Graph Node 2.3 Feature Graph

2.2 Graph Edge Construction

Construction o o Generation
- Nodes V = Key opcode set -EdgesE= V_u Inerability - Output: Feature graph
correlation L

0 G=(V.E)

Step3: Global Graph-Level Vector Generation
3.2 Global Pooling
Aggregation
- Global sum pooling
operation Pooling(h_v)

™

Step4: Graph Attention Network (GAT) Classification

3.1 Node Vector Update
- Structure matrix M updates
node embeddings h_v

3.3 Graph-Level Vector Output
- Output: Global contract vector
h G

A 4

4.3 Loss Function
Optimization
—» - Minimize prediction —
deviation via cross-
entropy loss L_ce

4.2 Fully Connected Layer
(FO)
- Map features to
classification space

4.4 Classification Output
- Output: Honeypot
contract type classification
result C

4.1 Input Layer
- Input: Graph-level ~—
vector h_G

Figure 2. Closed-Loop Linkage for Fine-Grained Detection of Honeypot Contracts

This process achieves a full-chain analysis from code feature extraction, interactive testing
to graph structure modeling, combining the advantages of static analysis and dynamic
verification. It can effectively identify covert honeypot logic that is only triggered under

specific transaction sequences.

3.3.2 Specific implementation process

To mitigate the impact of non-critical lexical elements in honeycomb contracts on contract
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type identification, we leverage the filtered key operation codes derived from interaction logic
vulnerability mining to construct a source code structure diagram. Operation codes serve as
graph nodes, while logical vulnerabilities function as connecting edges. By analyzing the
structural relationship matrix between nodes and edges, we update the node vectors of contract

vulnerabilities [6]. The expression is as follows:

Q
hs:ZPCS'lp
e=1

In the above expression, @ denotes the number of structure graph nodes, P represents the
mutation probability matrix, ¢, stands for the parameter matrix of the e-th node, 1 refers to the

coverage rate of key opcodes in the contract, and /4, denotes the update vector of node ¢.

On this basis, the update vectors of all nodes are aggregated using the global cumulative

activation function to generate the graph-level vector H, which is given by:

H = R(hglKé' € V)
In the above expression, R denotes the global cumulative activation function, kg represents

the §-th token in the contract, and V denotes the token set.

The graph-level vector of the contract is fed into the fully connected layer of the graph
attention network, where a cross-entropy function is introduced to minimize the deviation
between the output vulnerability type and the actual type. This enables the training of the
classification network, ultimately determining the corresponding category for the honeypot

contract to be detected [7]. As shown in the following formula:

Output = HT (x) +

C
In the above expression, T'(x) denotes the cross-entropy function, ¢ represents the total

3
1-x

number of vulnerable contract types, y denotes the training sample subset, and Output denotes

the output vulnerable contract type.

The source code graph structure is constructed by exploiting critical operation codes and
interaction logic vulnerabilities. The global accumulation pooling function is used to update
and aggregate the vector of structural nodes, thereby generating graph-level vectors. These
vectors are then input into the graph attention network, where the cross-entropy loss function
is employed to output the type of honeypot contract, achieving fine-grained detection of

honeypot contracts.
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4. Case Study Analysis

4.1 Experimental Preparation
The experimental dataset used in this study is HD-DATA-NORMAL, containing 1,200

honeypot contracts that cover six distinct categories, as detailed in Table 2.

Table 2. Types of Honey Jar Contracts and Corresponding Instance Numbers

order Honey Pot Contract Type Instance count core deception
number
1 Ultra-long hidden space 200 Hide key code with extra-long spaces
2 logical trap 200 Use state variable preset
3 Uninitialized pointer type 200 Using the default behavior of uninitialized
storage pointers in Solidity
4 inherited conflict 200 Variable Overwriting Caused by
Inheritance Conflict
5 Gambling game type 200 pseudorandom number generation
vulnerability
6 compiler exploit 200 The Error of Encoding the Empty String

Parameter by Compiler

Using AFL++ v4.15¢ as the fuzzing tool, 100 test cases were generated through smart
contract compilation and deployment. Ten test accounts were configured using a blockchain
simulator. The LSTM model was employed to decompose the account contract bytecode into
operation code vectors, constructing [contract address, operation code vector, label] triplets.
The input sequence length was set to 256, with the first five key operation code weights assigned
in order as 0.223,0.152,0.110,0.964, and 0.523. The batch size was 64, the training rounds were
50, and the queue size was 100. Based on the honeypot contract types shown in Table 2, the

attack process was manually simulated to verify the model's classification effectiveness.

4.2 Experimental Results

The proposed honeypot contract detection method, combined with the SBERT-CNN-
BiLSTM-Attention-based approach and the program slicing-graph neural network method,
were applied to identify contract vulnerabilities. Figure 3 presents the false positive rates for

these three methods across six distinct honeypot contract types.

Figure 3 clearly demonstrates that when applying the literature-based method to six specific
honeypot contract categories, the resulting false positive count significantly exceeds that of our
proposed method. This indicates that neither approach can accurately identify the specific
vulnerability types of these honeypots. In contrast, the design-based method achieves sub-3
false positives across all six contract types, enabling fine-grained detection. These results

validate our method's effectiveness in reducing misclassification risks while demonstrating high
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detection accuracy and practical applicability.

36 [ Our Method [ ] Literature[1] [ Literature[2]

Reading\Number

Honeypot Contract Category Number

Figure 3. Comparison of honeypot contract test results

5. Conclusion

This study develops an intelligent solution for fine-grained honeypot contract detection
through deep integration of LSTM temporal modeling and Fuzzing mutation testing techniques.
The approach employs LSTM networks to filter critical operation codes within contracts, while
Fuzzing test cases are utilized to identify specific vulnerability types. Experimental validation
demonstrates the method's reliability in honeypot contract detection. This achievement provides
a low-false-positive and highly interpretable detection tool for smart contract development,
facilitating the transition from passive response to proactive defense in smart contract security

technology. The research holds significant theoretical and practical value.

Future work can be further extended to honeypot detection in a multi-chain environment,
exploring collaborative attack patterns of cross-chain contracts, and investigating a hybrid
detection framework combining symbolic execution and deep learning to enhance the discovery
capability of zero-day honeypot logic. Additionally, consideration can be given to building an
open-source honeypot contract detection platform to promote the co-construction and sharing

of the industry's security ecosystem.
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