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Abstract. Honey pot contract operation code sequences 

exhibit strong concealment, significantly increasing 

detection complexity. To address this, this study 

proposes a fine-grained detection method based on 

LSTM and Fuzzing. By analyzing frequency 

differences across operation codes in different honey 

pot contract types, we calculate their occurrence rates 

and assign high initial weights to high-frequency 

operation codes. The weight mechanism is then 

integrated into the LSTM model to calculate operational 

code contribution levels and importance scores, 

enabling extraction of high-scoring critical operation 

codes. The research employs Fuzzing fuzz testing 

technology to generate initial test case sets and defines 

their deconstruction methods. Using case identifiers and 

functional codes, we validate interaction logic 

vulnerabilities in honey pot contracts through mutation 

factor probability matrices. By constructing source code 

graph structures using critical operation codes and 

interaction logic vulnerabilities, we update and 

aggregate vector nodes with global accumulation 

pooling functions to generate graph-level vectors. 

These graph-level vectors are then fed into graph 

attention networks, with cross-entropy loss functions 

jointly determining honey pot contract types. Test 

results demonstrate that the proposed method achieves 

sub-3 false positives for six honey pot contract types, 

demonstrating high precision in fine-grained detection. 

 

Keywords: LSTM Model; Fuzzing Testing; Smart 

Contract Honeypot; Fine-grained Detection 

1. Introduction 

Honeypot contracts, a novel type of smart contract emerging in recent years, differ from 

traditional vulnerability contracts and stealth contracts. They employ deceptive tactics like 
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fabricated funding pools and conditional locking mechanisms to infiltrate target users and 

devices, ultimately stealing assets or tampering with data, posing significant security risks. 

Current detection methods primarily rely on control flow matching, analyzing logical trap 

timing patterns through symbolic code execution and identifying vulnerabilities via state space 

evolution. However, this approach fails to comprehensively cover attack paths, resulting in high 

false positive rates. Therefore, there is an urgent need for a high-precision detection method to 

mitigate honeypot contract attacks. 

In current research on contract vulnerability detection, scholars have proposed various 

methodologies. Specifically, Reference [1] employs entity-relation-entity triplet embedding to 

extract variable features, combines neural networks with bidirectional long short-term memory 

networks to model global temporal dependencies, and utilizes SoftMax classifiers for 

vulnerability classification. While this approach visualizes critical code segments through 

weight distribution for rapid root cause identification, it struggles with dynamic logic 

processing and often misses context-sensitive vulnerabilities. Reference [2] constructs program 

dependency graphs based on contract features, concatenates semantic features via graph 

convolutional networks for vulnerability classification. This method effectively reduces sample 

data size while preserving critical code segments and lowering computational complexity. 

However, its slicing granularity control introduces redundant information that disrupts key 

dependency chains, thereby increasing detection errors. 

Furthermore, most existing research focuses on general vulnerability detection, lacking 

specialized analysis methods for the unique logical traps and interactive deception mechanisms 

of honeypot contracts. Honeypot contracts often embed covert malicious logic within normal 

business processes, making it difficult for traditional static analysis and dynamic execution 

methods to capture their coordinated attack behaviors across contracts and transactions. 

Therefore, a hybrid detection framework combining temporal modeling and fuzz testing has 

become an important direction for improving detection accuracy. 

Building on the aforementioned research context, this study employs LSTM and Fuzzing 

techniques to conduct granular detection of honeypot contracts, thereby providing a security 

solution with low false positives and high coverage for the blockchain ecosystem. 

2. Technical Framework and Research Overview 

2.1 Evolution of Smart Contract Security Detection Techniques 

The field of smart contract security detection has evolved from early rule-based pattern 
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matching into a comprehensive system integrating static analysis, dynamic testing, and machine 

learning. Static analysis methods, such as symbolic execution and formal verification, can 

systematically traverse the contract state space but face the path explosion problem when 

dealing with complex control flows and external calls. Dynamic analysis methods, particularly 

fuzzing, trigger runtime exceptions by generating random or semi-structured inputs, yet their 

effectiveness heavily depends on the design of initial seeds and mutation strategies. In recent 

years, data-driven methods represented by deep learning have provided a new paradigm for 

contract security analysis. These methods can automatically learn vulnerability representation 

patterns from vast amounts of contract code, significantly enhancing the automation and 

generalization capabilities of detection. 

2.2 Key Advances in Deep Learning for Contract Security Analysis 

In the process of applying deep learning to contract security, model architectures have 

evolved from sequence models to graph neural networks. Sequence models represented by 

LSTM and BiLSTM can effectively capture long-range dependencies in opcode sequences but 

have limitations when processing structured semantics across functions and contracts. Graph 

Neural Networks (GNNs), by abstracting contracts into control flow graphs, data flow graphs, 

or hybrid graph structures, better preserve the topological semantics of code and have 

demonstrated excellent performance in detecting vulnerabilities such as reentrancy and 

improper access control. However, most existing methods treat contracts as static code for 

analysis and fail to fully consider the dynamic nature of interactive logic and state evolution, 

which is precisely the core mechanism by which honeypot contracts achieve deception. 

2.3 Special Challenges in Honeypot Contract Detection 

The detection of honeypot contracts faces three core challenges: 

(1) High Concealment: Malicious logic is often disguised within normal business code, 

harmless state variables, or compiler features, making it difficult to identify through syntax or 

simple patterns. 

(2) Interaction Dependency: Attack triggers usually depend on specific sequences of 

external calls or state conditions; single-dimensional code analysis cannot reconstruct the 

complete attack chain. 

(3) Adversarial Evolution: Honeypot designers actively evade known detection patterns 

(e.g., replacing high-frequency opcodes, control flow obfuscation), requiring detection methods 

to possess continuous adaptation capabilities. 
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Current methods based on control flow matching or symbolic execution can identify some 

logic traps but struggle to achieve high-precision, fine-grained classification and root cause 

localization of honeypots. 

2.4 Overall Technical Framework of This Paper 

To address the aforementioned challenges, this paper proposes a three-layer integrated fine-

grained detection framework of "Feature Screening - Interaction Verification - Graph Structure 

Classification," as shown in Figure 1. 

 Graph Structure Construction & Graph Attention Network Classification (GAT)

 Output: Honeypot Contract Type & Fine-Grained Results

Risk-Guided Fuzzing for Interactive Logic Vulnerability Mining

Weighted LSTM-based  Key Opcode Screening Module (KOLSTM) 

Input: Contract Bytecode Sequence

 

Figure 1. The Proposed Fine-Grained Honeypot Contract Detection Framework 

The core innovations of this framework are: 

(1) Introducing an opcode weighting mechanism that combines frequency statistics with 

semantic importance to enhance LSTM's sensitivity to potential malicious code. 

(2) Designing a risk-guided fuzzing strategy that uses key opcodes to direct mutation, 

enabling in-depth testing of interactive logic. 

(3) Constructing an "opcode-vulnerability" association graph that integrates static code 

features with dynamic interactive behaviors, achieving end-to-end fine-grained classification 

through a Graph Attention Network. 

2.5 Comparative Advantages Over Existing Methods 

Compared to traditional methods, the proposed framework offers the following advantages: 

(1) Comprehensive Coverage: It combines code sequence analysis with interactive behavior 
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verification, avoiding blind spots inherent in single-perspective detection. 

(2) Strong Adaptability: Through dynamic weight adjustment and feedback-driven fuzzing, 

it can adapt to the adversarial evolution of honeypot contracts. 

(3) High Interpretability: The processes of key opcode screening and graph structure 

construction provide traceable semantic evidence for detection results, aiding security analysts 

in root cause localization. 

(4) This framework provides a closed-loop solution for honeypot contract detection, 

spanning from feature extraction and behavior verification to structural classification, laying a 

theoretical foundation for the method design and experimental validation in subsequent 

chapters. 

3. Design of Fine-grained Detection Method for Honeycomb 

Contract 

3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM 

Since different types of honeypot contracts contain distinct operation codes with varying 

frequencies, we first calculate the average occurrence frequency of each operation code within 

the contracts, then assign higher initial weights to high-frequency operation codes [3]. The 

calculation formula is as follows: 

𝑓𝑝 = (𝛼𝑝||𝛽) + (𝑔||𝑣) 

𝑤𝑝 =
𝜕‖𝑒‖2

2

𝑓𝑝𝑊𝑜
 

In the above expression, the notations are defined as follows: 𝛼𝑝 denotes the base distribution 

of operation 𝑝 in the contract, 𝛽 denotes the null string used for encoding in the contract, 𝑔 

denotes the actual hidden code, 𝑣 denotes the state variable, 𝑓𝑝 denotes the occurrence count of 

operation 𝑝, 𝜕 denotes the call address of the target account, 𝑒 denotes the conditional jump 

instruction, 𝑊𝑜 denotes the hidden state update parameter, and 𝑤𝑝 denotes the initial weight of 

operation 𝑝. 

The weight initialization strategy draws inspiration from the TF-IDF concept in information 

retrieval, adapted for opcode sequence analysis. In honeypot contracts, frequently appearing 

opcodes (e.g., CALL, SELFDESTRUCT, JUMPI) are often associated with sensitive behaviors 

such as fund transfer and conditional jumps, yet their importance varies significantly across 

contract types. Therefore, this paper considers not only frequency but also introduces a 
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“contract discriminability” factor to prevent commonly occurring opcodes (e.g., PUSH, DUP) 

from dominating model attention due to their universal high frequency. In practice, if an opcode 

appears frequently across most contracts, its initial weight is appropriately attenuated, thereby 

focusing more on opcode patterns distinctive to honeypots. 

In conventional Long Short-Term Memory (LSTM) models, an operation code weight 

mechanism is introduced to develop an enhanced long short-term memory network called 

KOLSTM. By implementing a weighted update strategy for input and hidden gates, the system 

calculates the weight contribution of high-frequency operation codes, as shown in the following 

formula: 

𝑦𝑝 = 𝑠𝑖𝑔 𝑚𝑜𝑑 (𝑙𝑜𝑔 (
𝐷

𝐷1 + 1
) 𝑢 + 𝑤𝑝) 

In the above expression, 𝐷 denotes the opcode vector input at the current moment, 𝐷1 refers 

to the output of the forgetting gate, 𝑢 represents the proportion of the cell state output relative 

to the hidden state, and 𝑦𝑝 stands for the weight contribution quantization value corresponding 

to operation 𝑝. 

The importance score is calculated based on the weight contribution of the operation code 

during model training, as shown in the following formula: 

𝑎𝑝 =
∑ 𝑦𝑝 • 𝐼𝑛

𝑝=1

𝜃ℎ − 𝑗𝑜
 

In the above expression, 𝑛 denotes the number of contracts, 𝐼 represents the indicator 

function, 𝜃ℎ represents the word vector expression of the weighted average operation code; 𝑗𝑜  

represents the adjustable parameter matrix; and 𝑎𝑝 represents the importance evaluation score 

of the operation code 𝑝. 

Based on the importance score of operation codes, the 𝑆 top-performing codes are selected 

as the construction operation codes, followed by vulnerability mining in contract interaction 

logic. 

3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic 

Fuzzing is a fuzz testing technique for general network protocols. In honeypot contract 

detection, it selects key operation codes based on their characteristics to test and identify 

interaction logic vulnerabilities. 

Based on the risk level defined by input space and key operation codes, the initial test case 

set is generated. This set consists of three parts: message header, function code, and data code 
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[4]. The decomposition method is shown in Table 1. 

Table 1. Test Case Decomposition Method 

message field span 

transaction identifier Unlimited matching values 

protocol identifier The default value is 0 

command identifier The default value is 0 

fill character 15 

element ID 1~256 

option code 0~255 

state changing code 1~535 

element ID 1~17 

Length identifier 0~535 

To reduce the selection frequency of test data objects and simplify the computational process, 

the variation factors and their values of each identifier and function code in the message field 

are merged. Based on the characteristics of normalized value ranges, the probability of variation 

factors for identifiers and function codes is determined [5]. As shown in the following formula: 

𝑃 = (𝑝0, 𝑝1, . . . , 𝑝𝑚) = [

𝑏(𝑦𝑘 = 0|𝑥𝑢)

𝑏(𝑦𝑟 = 𝑎𝑝|𝑥𝑢)
] 

In the above expression, 𝑝𝑚 denotes the mutation probability of the m-th function code,b

represents a random variable, ky  stands for the numerical mapping of the k-th identifier, 

𝑥𝑢 refers to the input message template, ry  denotes the numerical mapping of the r-th function 

code, pa  represents the importance evaluation value of opcode p, and 𝑃 denotes the mutation 

probability matrix. 

To improve the path coverage of fuzzing tests, this paper designs a risk-guided directional 

mutation algorithm. The algorithm first marks the test message fields containing key opcodes 

based on their importance scores. Subsequently, a hierarchical mutation strategy is adopted: 

high-risk fields (e.g., state confusion codes, option negotiation codes) undergo multiple rounds 

of random mutation and boundary value testing, while medium- and low-risk fields undergo 

lightweight random perturbations. Additionally, a feedback mechanism is introduced, where 

code coverage and state change records after each test execution are used as inputs to 

dynamically adjust the mutation factor probability matrix, enabling iterative deep exploration 

of potential honeypot logic. The algorithm flow is as shown in Algorithm 1. 

By analyzing the correlation distribution among public codes, custom codes, and reserved 

codes in the testing protocol, we deploy a blockchain-based testing environment. In this 

environment, the mutation probability matrix of function codes and identifiers serves as the 
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input combination for triggering anomalies. Initial test cases are used to validate vulnerabilities. 

If the data fields of all identifiers and function codes in the message domain display as "empty", 

it confirms the presence of honeypot logic in the contract, requiring further detection of 

vulnerability types in the honeypot contract. 

Input: Initial test case set T, key opcode list K, mutation rounds R 

Output: Vulnerability-triggering test case set V 

Step 1. Initialize vulnerability-triggering test case set: V ← ∅ 

Step 2. For each mutation round r = 1 to R do 

Step 3. For each test case test ∈ T do 

Step 4. Identify overlapping message fields: 

Let F<sub>overlap</sub> be the set of message fields in test that contain opcodes 

from K 

Step 5. For each field f ∈ F<sub>overlap</sub>, select mutation strategy: 

   strategy(f) = random_mutation if risk(f) = high 

   strategy(f) = boundary_testing if risk(f) = high 

   strategy(f) = light_perturbation if risk(f) ∈ {medium, low} 

   where risk(f) is determined by the opcode importance score 

Step 6. Generate new test case: test' = mutate(test, strategy(f)) 

Step 7. Execute test' in local chain deployment environment 

Step 8. If execution triggers abnormal state or "empty data field": 

V ← V ∪ {test'} 

Step 9. End for 

Step 10. Update mutation factor probability matrix based on coverage feedback: 

   M<sub>mut</sub><sup>(r+1)</sup>←update_matrix(M<sub>mut</sub><sup>(r)

</sup>, coverage_data) 

Step 11. End for 

Step 12. Return V 

Algorithm 1. Risk-Guided Fuzzing Mutation Algorithm for Honeypot Contract Detection. 

3.3 Fine-grained Detection of Honey Pot Contracts 

3.3.1 Overview of the overall testing process 

The complete detection process, from opcode filtering to graph attention network 

classification, forms a closed-loop chain, as illustrated in Figure 2. The first step involves 

filtering key opcodes using an improved KOLSTM model, while generating suitable test cases 

with the help of Fuzzing technology to explore potential interaction logic vulnerabilities in the 

contract, providing core feature support for subsequent detection. The second step involves 

using the filtered key opcodes as nodes in a graph structure, and the discovered interaction logic 

vulnerabilities as connecting edges between nodes, to construct a source code graph structure 
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that accurately represents the core features of the contract. The third step involves updating 

each node vector based on the structural relationship matrix between nodes and edges, and then 

aggregating all updated node vectors through a global accumulative pooling function to 

generate a graph-level vector that comprehensively reflects the overall characteristics of the 

contract. The fourth step involves inputting the graph-level vector into the fully connected layer 

of the graph attention network, combining it with the cross-entropy loss function to minimize 

the deviation between the predicted type and the actual type, completing model training and 

precise classification of honeypot contract types, ultimately achieving fine-grained detection. 

Step3: Global Graph-Level Vector Generation

3.1 Node Vector Update

- Structure matrix M updates 

node embeddings h_v

3.2 Global Pooling 

Aggregation

- Global sum pooling 

operation Pooling(h_v)

3.3 Graph-Level Vector Output

- Output: Global contract vector 

 _G

Step4: Graph Attention Network (GAT) Classification

4.1 Input Layer

- Input: Graph-level 

vector  _G

4.2 Fully Connected Layer 

(FC)

- Map features to 

classification space

4.3 Loss Function 

Optimization

- Minimize prediction 

deviation via cross-

entropy loss L_ce

4.4 Classification Output

- Output: Honeypot 

contract type classification 

result C

Step2: Contract Source Code Graph Construction

2.1 Graph Node 

Construction

- Nodes V = Key opcode set 

O

2.2 Graph Edge Construction

- Edges E = Vulnerability 

correlation L

2.3 Feature Graph 

Generation

- Output: Feature graph 

G=(V,E)

Step1: Key Feature Mining

1.1 Key Opcode Screening

- Improved KOLSTM model

- Output: Key opcode set O

1.2 Vulnerability Logic Mining

- Fuzzing technology generates test cases

- Output: Interaction vulnerability set L

Closed-Loop Iterative Optimization

Feedback Classification Result C

- Analyze classification errors

Optimize Preceding Modules

- Adjust KOLSTM screening & 

Fuzzing

 

Figure 2. Closed-Loop Linkage for Fine-Grained Detection of Honeypot Contracts 

This process achieves a full-chain analysis from code feature extraction, interactive testing 

to graph structure modeling, combining the advantages of static analysis and dynamic 

verification. It can effectively identify covert honeypot logic that is only triggered under 

specific transaction sequences. 

3.3.2 Specific implementation process 

To mitigate the impact of non-critical lexical elements in honeycomb contracts on contract 
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type identification, we leverage the filtered key operation codes derived from interaction logic 

vulnerability mining to construct a source code structure diagram. Operation codes serve as 

graph nodes, while logical vulnerabilities function as connecting edges. By analyzing the 

structural relationship matrix between nodes and edges, we update the node vectors of contract 

vulnerabilities [6]. The expression is as follows: 

ℎ𝜀 = ∑ 𝑃𝜍𝜀 • 𝜓

𝑄

𝜀=1

 

In the above expression, 𝑄  denotes the number of structure graph nodes, 𝑃  represents the 

mutation probability matrix, 𝜍𝜀  stands for the parameter matrix of the 𝜀-th node, 𝜓 refers to the 

coverage rate of key opcodes in the contract, and ℎ𝜀  denotes the update vector of node 𝜀. 

On this basis, the update vectors of all nodes are aggregated using the global cumulative 

activation function to generate the graph-level vector 𝐻, which is given by: 

𝐻 = 𝑅(ℎ𝜀|𝜅𝛿 ∈ 𝑉) 

In the above expression, 𝑅 denotes the global cumulative activation function, 𝜅𝛿  represents 

the 𝛿-th token in the contract, and 𝑉 denotes the token set. 

The graph-level vector of the contract is fed into the fully connected layer of the graph 

attention network, where a cross-entropy function is introduced to minimize the deviation 

between the output vulnerability type and the actual type. This enables the training of the 

classification network, ultimately determining the corresponding category for the honeypot 

contract to be detected [7]. As shown in the following formula: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝑇(𝑥) + ∑
1 − 𝜒

𝜉

𝜉

𝑐=1

 

In the above expression, 𝑇(𝑥)  denotes the cross-entropy function, 𝜉  represents the total 

number of vulnerable contract types, 𝜒 denotes the training sample subset, and 𝑂𝑢𝑡𝑝𝑢𝑡 denotes 

the output vulnerable contract type. 

The source code graph structure is constructed by exploiting critical operation codes and 

interaction logic vulnerabilities. The global accumulation pooling function is used to update 

and aggregate the vector of structural nodes, thereby generating graph-level vectors. These 

vectors are then input into the graph attention network, where the cross-entropy loss function 

is employed to output the type of honeypot contract, achieving fine-grained detection of 

honeypot contracts. 
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4. Case Study Analysis 

4.1 Experimental Preparation 

The experimental dataset used in this study is HD-DATA-NORMAL, containing 1,200 

honeypot contracts that cover six distinct categories, as detailed in Table 2. 

Table 2. Types of Honey Jar Contracts and Corresponding Instance Numbers 

order 

number 

Honey Pot Contract Type Instance count core deception 

1 Ultra-long hidden space 200 Hide key code with extra-long spaces 

2 logical trap 200 Use state variable preset 

3 Uninitialized pointer type 200 Using the default behavior of uninitialized 

storage pointers in Solidity 

4 inherited conflict 200 Variable Overwriting Caused by 

Inheritance Conflict 

5 Gambling game type 200 pseudorandom number generation 

vulnerability 

6 compiler exploit 200 The Error of Encoding the Empty String 

Parameter by Compiler 

Using AFL++ v4.15c as the fuzzing tool, 100 test cases were generated through smart 

contract compilation and deployment. Ten test accounts were configured using a blockchain 

simulator. The LSTM model was employed to decompose the account contract bytecode into 

operation code vectors, constructing [contract address, operation code vector, label] triplets. 

The input sequence length was set to 256, with the first five key operation code weights assigned 

in order as 0.223,0.152,0.110,0.964, and 0.523. The batch size was 64, the training rounds were 

50, and the queue size was 100. Based on the honeypot contract types shown in Table 2, the 

attack process was manually simulated to verify the model's classification effectiveness. 

4.2 Experimental Results 

The proposed honeypot contract detection method, combined with the SBERT-CNN-

BiLSTM-Attention-based approach and the program slicing-graph neural network method, 

were applied to identify contract vulnerabilities. Figure 3 presents the false positive rates for 

these three methods across six distinct honeypot contract types. 

Figure 3 clearly demonstrates that when applying the literature-based method to six specific 

honeypot contract categories, the resulting false positive count significantly exceeds that of our 

proposed method. This indicates that neither approach can accurately identify the specific 

vulnerability types of these honeypots. In contrast, the design-based method achieves sub-3 

false positives across all six contract types, enabling fine-grained detection. These results 

validate our method's effectiveness in reducing misclassification risks while demonstrating high 
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detection accuracy and practical applicability. 
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Figure 3. Comparison of honeypot contract test results 

5. Conclusion 

This study develops an intelligent solution for fine-grained honeypot contract detection 

through deep integration of LSTM temporal modeling and Fuzzing mutation testing techniques. 

The approach employs LSTM networks to filter critical operation codes within contracts, while 

Fuzzing test cases are utilized to identify specific vulnerability types. Experimental validation 

demonstrates the method's reliability in honeypot contract detection. This achievement provides 

a low-false-positive and highly interpretable detection tool for smart contract development, 

facilitating the transition from passive response to proactive defense in smart contract security 

technology. The research holds significant theoretical and practical value. 

Future work can be further extended to honeypot detection in a multi-chain environment, 

exploring collaborative attack patterns of cross-chain contracts, and investigating a hybrid 

detection framework combining symbolic execution and deep learning to enhance the discovery 

capability of zero-day honeypot logic. Additionally, consideration can be given to building an 

open-source honeypot contract detection platform to promote the co-construction and sharing 

of the industry's security ecosystem. 
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