
International Journal of Advanced AI Applications
Online ISSN: 3104-9338

Print ISSN: 3104-932X

40

Research on Fine-grained Detection Method of Honey Pot

Contracts Based on LSTM and Fuzzing

Chenran Xi

Taiyuan Normal University

Received: December 27, 2025

Revised: January 18, 2026

Accepted: January 19, 2026

Published online: January 28,

2026

To appear in: International

Journal of Advanced AI

Applications, Vol. 2, No. 2

(February 2026)

 Corresponding Author:

Chenran Xi

(1215819301@qq.com)

Abstract. Honey pot contract operation code sequences

exhibit strong concealment, significantly increasing

detection complexity. To address this, this study

proposes a fine-grained detection method based on

LSTM and Fuzzing. By analyzing frequency

differences across operation codes in different honey

pot contract types, we calculate their occurrence rates

and assign high initial weights to high-frequency

operation codes. The weight mechanism is then

integrated into the LSTM model to calculate operational

code contribution levels and importance scores,

enabling extraction of high-scoring critical operation

codes. The research employs Fuzzing fuzz testing

technology to generate initial test case sets and defines

their deconstruction methods. Using case identifiers and

functional codes, we validate interaction logic

vulnerabilities in honey pot contracts through mutation

factor probability matrices. By constructing source code

graph structures using critical operation codes and

interaction logic vulnerabilities, we update and

aggregate vector nodes with global accumulation

pooling functions to generate graph-level vectors.

These graph-level vectors are then fed into graph

attention networks, with cross-entropy loss functions

jointly determining honey pot contract types. Test

results demonstrate that the proposed method achieves

sub-3 false positives for six honey pot contract types,

demonstrating high precision in fine-grained detection.

Keywords: LSTM Model; Fuzzing Testing; Smart

Contract Honeypot; Fine-grained Detection

1. Introduction

Honeypot contracts, a novel type of smart contract emerging in recent years, differ from

traditional vulnerability contracts and stealth contracts. They employ deceptive tactics like

Chenran Xi

41

fabricated funding pools and conditional locking mechanisms to infiltrate target users and

devices, ultimately stealing assets or tampering with data, posing significant security risks.

Current detection methods primarily rely on control flow matching, analyzing logical trap

timing patterns through symbolic code execution and identifying vulnerabilities via state space

evolution. However, this approach fails to comprehensively cover attack paths, resulting in high

false positive rates. Therefore, there is an urgent need for a high-precision detection method to

mitigate honeypot contract attacks.

In current research on contract vulnerability detection, scholars have proposed various

methodologies. Specifically, Reference [1] employs entity-relation-entity triplet embedding to

extract variable features, combines neural networks with bidirectional long short-term memory

networks to model global temporal dependencies, and utilizes SoftMax classifiers for

vulnerability classification. While this approach visualizes critical code segments through

weight distribution for rapid root cause identification, it struggles with dynamic logic

processing and often misses context-sensitive vulnerabilities. Reference [2] constructs program

dependency graphs based on contract features, concatenates semantic features via graph

convolutional networks for vulnerability classification. This method effectively reduces sample

data size while preserving critical code segments and lowering computational complexity.

However, its slicing granularity control introduces redundant information that disrupts key

dependency chains, thereby increasing detection errors.

Furthermore, most existing research focuses on general vulnerability detection, lacking

specialized analysis methods for the unique logical traps and interactive deception mechanisms

of honeypot contracts. Honeypot contracts often embed covert malicious logic within normal

business processes, making it difficult for traditional static analysis and dynamic execution

methods to capture their coordinated attack behaviors across contracts and transactions.

Therefore, a hybrid detection framework combining temporal modeling and fuzz testing has

become an important direction for improving detection accuracy.

Building on the aforementioned research context, this study employs LSTM and Fuzzing

techniques to conduct granular detection of honeypot contracts, thereby providing a security

solution with low false positives and high coverage for the blockchain ecosystem.

2. Technical Framework and Research Overview

2.1 Evolution of Smart Contract Security Detection Techniques

The field of smart contract security detection has evolved from early rule-based pattern

Research on Fine-grained Detection Method of Honey Pot Contracts Based on LSTM and

Fuzzing

42

matching into a comprehensive system integrating static analysis, dynamic testing, and machine

learning. Static analysis methods, such as symbolic execution and formal verification, can

systematically traverse the contract state space but face the path explosion problem when

dealing with complex control flows and external calls. Dynamic analysis methods, particularly

fuzzing, trigger runtime exceptions by generating random or semi-structured inputs, yet their

effectiveness heavily depends on the design of initial seeds and mutation strategies. In recent

years, data-driven methods represented by deep learning have provided a new paradigm for

contract security analysis. These methods can automatically learn vulnerability representation

patterns from vast amounts of contract code, significantly enhancing the automation and

generalization capabilities of detection.

2.2 Key Advances in Deep Learning for Contract Security Analysis

In the process of applying deep learning to contract security, model architectures have

evolved from sequence models to graph neural networks. Sequence models represented by

LSTM and BiLSTM can effectively capture long-range dependencies in opcode sequences but

have limitations when processing structured semantics across functions and contracts. Graph

Neural Networks (GNNs), by abstracting contracts into control flow graphs, data flow graphs,

or hybrid graph structures, better preserve the topological semantics of code and have

demonstrated excellent performance in detecting vulnerabilities such as reentrancy and

improper access control. However, most existing methods treat contracts as static code for

analysis and fail to fully consider the dynamic nature of interactive logic and state evolution,

which is precisely the core mechanism by which honeypot contracts achieve deception.

2.3 Special Challenges in Honeypot Contract Detection

The detection of honeypot contracts faces three core challenges:

(1) High Concealment: Malicious logic is often disguised within normal business code,

harmless state variables, or compiler features, making it difficult to identify through syntax or

simple patterns.

(2) Interaction Dependency: Attack triggers usually depend on specific sequences of

external calls or state conditions; single-dimensional code analysis cannot reconstruct the

complete attack chain.

(3) Adversarial Evolution: Honeypot designers actively evade known detection patterns

(e.g., replacing high-frequency opcodes, control flow obfuscation), requiring detection methods

to possess continuous adaptation capabilities.

Chenran Xi

43

Current methods based on control flow matching or symbolic execution can identify some

logic traps but struggle to achieve high-precision, fine-grained classification and root cause

localization of honeypots.

2.4 Overall Technical Framework of This Paper

To address the aforementioned challenges, this paper proposes a three-layer integrated fine-

grained detection framework of "Feature Screening - Interaction Verification - Graph Structure

Classification," as shown in Figure 1.

 Graph Structure Construction & Graph Attention Network Classification (GAT)

 Output: Honeypot Contract Type & Fine-Grained Results

Risk-Guided Fuzzing for Interactive Logic Vulnerability Mining

Weighted LSTM-based Key Opcode Screening Module (KOLSTM)

Input: Contract Bytecode Sequence

Figure 1. The Proposed Fine-Grained Honeypot Contract Detection Framework

The core innovations of this framework are:

(1) Introducing an opcode weighting mechanism that combines frequency statistics with

semantic importance to enhance LSTM's sensitivity to potential malicious code.

(2) Designing a risk-guided fuzzing strategy that uses key opcodes to direct mutation,

enabling in-depth testing of interactive logic.

(3) Constructing an "opcode-vulnerability" association graph that integrates static code

features with dynamic interactive behaviors, achieving end-to-end fine-grained classification

through a Graph Attention Network.

2.5 Comparative Advantages Over Existing Methods

Compared to traditional methods, the proposed framework offers the following advantages:

(1) Comprehensive Coverage: It combines code sequence analysis with interactive behavior

Research on Fine-grained Detection Method of Honey Pot Contracts Based on LSTM and

Fuzzing

44

verification, avoiding blind spots inherent in single-perspective detection.

(2) Strong Adaptability: Through dynamic weight adjustment and feedback-driven fuzzing,

it can adapt to the adversarial evolution of honeypot contracts.

(3) High Interpretability: The processes of key opcode screening and graph structure

construction provide traceable semantic evidence for detection results, aiding security analysts

in root cause localization.

(4) This framework provides a closed-loop solution for honeypot contract detection,

spanning from feature extraction and behavior verification to structural classification, laying a

theoretical foundation for the method design and experimental validation in subsequent

chapters.

3. Design of Fine-grained Detection Method for Honeycomb

Contract

3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM

Since different types of honeypot contracts contain distinct operation codes with varying

frequencies, we first calculate the average occurrence frequency of each operation code within

the contracts, then assign higher initial weights to high-frequency operation codes [3]. The

calculation formula is as follows:

𝑓𝑝 = (𝛼𝑝||𝛽) + (𝑔||𝑣)

𝑤𝑝 =
𝜕‖𝑒‖2

2

𝑓𝑝𝑊𝑜

In the above expression, the notations are defined as follows: 𝛼𝑝 denotes the base distribution

of operation 𝑝 in the contract, 𝛽 denotes the null string used for encoding in the contract, 𝑔

denotes the actual hidden code, 𝑣 denotes the state variable, 𝑓𝑝 denotes the occurrence count of

operation 𝑝, 𝜕 denotes the call address of the target account, 𝑒 denotes the conditional jump

instruction, 𝑊𝑜 denotes the hidden state update parameter, and 𝑤𝑝 denotes the initial weight of

operation 𝑝.

The weight initialization strategy draws inspiration from the TF-IDF concept in information

retrieval, adapted for opcode sequence analysis. In honeypot contracts, frequently appearing

opcodes (e.g., CALL, SELFDESTRUCT, JUMPI) are often associated with sensitive behaviors

such as fund transfer and conditional jumps, yet their importance varies significantly across

contract types. Therefore, this paper considers not only frequency but also introduces a

Chenran Xi

45

“contract discriminability” factor to prevent commonly occurring opcodes (e.g., PUSH, DUP)

from dominating model attention due to their universal high frequency. In practice, if an opcode

appears frequently across most contracts, its initial weight is appropriately attenuated, thereby

focusing more on opcode patterns distinctive to honeypots.

In conventional Long Short-Term Memory (LSTM) models, an operation code weight

mechanism is introduced to develop an enhanced long short-term memory network called

KOLSTM. By implementing a weighted update strategy for input and hidden gates, the system

calculates the weight contribution of high-frequency operation codes, as shown in the following

formula:

𝑦𝑝 = 𝑠𝑖𝑔 𝑚𝑜𝑑 (𝑙𝑜𝑔 (
𝐷

𝐷1 + 1
) 𝑢 + 𝑤𝑝)

In the above expression, 𝐷 denotes the opcode vector input at the current moment, 𝐷1 refers

to the output of the forgetting gate, 𝑢 represents the proportion of the cell state output relative

to the hidden state, and 𝑦𝑝 stands for the weight contribution quantization value corresponding

to operation 𝑝.

The importance score is calculated based on the weight contribution of the operation code

during model training, as shown in the following formula:

𝑎𝑝 =
∑ 𝑦𝑝 • 𝐼𝑛

𝑝=1

𝜃ℎ − 𝑗𝑜

In the above expression, 𝑛 denotes the number of contracts, 𝐼 represents the indicator

function, 𝜃ℎ represents the word vector expression of the weighted average operation code; 𝑗𝑜

represents the adjustable parameter matrix; and 𝑎𝑝 represents the importance evaluation score

of the operation code 𝑝.

Based on the importance score of operation codes, the 𝑆 top-performing codes are selected

as the construction operation codes, followed by vulnerability mining in contract interaction

logic.

3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic

Fuzzing is a fuzz testing technique for general network protocols. In honeypot contract

detection, it selects key operation codes based on their characteristics to test and identify

interaction logic vulnerabilities.

Based on the risk level defined by input space and key operation codes, the initial test case

set is generated. This set consists of three parts: message header, function code, and data code

Research on Fine-grained Detection Method of Honey Pot Contracts Based on LSTM and

Fuzzing

46

[4]. The decomposition method is shown in Table 1.

Table 1. Test Case Decomposition Method

message field span

transaction identifier Unlimited matching values

protocol identifier The default value is 0

command identifier The default value is 0

fill character 15

element ID 1~256

option code 0~255

state changing code 1~535

element ID 1~17

Length identifier 0~535

To reduce the selection frequency of test data objects and simplify the computational process,

the variation factors and their values of each identifier and function code in the message field

are merged. Based on the characteristics of normalized value ranges, the probability of variation

factors for identifiers and function codes is determined [5]. As shown in the following formula:

𝑃 = (𝑝0, 𝑝1, . . . , 𝑝𝑚) = [

𝑏(𝑦𝑘 = 0|𝑥𝑢)

𝑏(𝑦𝑟 = 𝑎𝑝|𝑥𝑢)
]

In the above expression, 𝑝𝑚 denotes the mutation probability of the m-th function code,b

represents a random variable, ky stands for the numerical mapping of the k-th identifier,

𝑥𝑢 refers to the input message template, ry denotes the numerical mapping of the r-th function

code, pa represents the importance evaluation value of opcode p, and 𝑃 denotes the mutation

probability matrix.

To improve the path coverage of fuzzing tests, this paper designs a risk-guided directional

mutation algorithm. The algorithm first marks the test message fields containing key opcodes

based on their importance scores. Subsequently, a hierarchical mutation strategy is adopted:

high-risk fields (e.g., state confusion codes, option negotiation codes) undergo multiple rounds

of random mutation and boundary value testing, while medium- and low-risk fields undergo

lightweight random perturbations. Additionally, a feedback mechanism is introduced, where

code coverage and state change records after each test execution are used as inputs to

dynamically adjust the mutation factor probability matrix, enabling iterative deep exploration

of potential honeypot logic. The algorithm flow is as shown in Algorithm 1.

By analyzing the correlation distribution among public codes, custom codes, and reserved

codes in the testing protocol, we deploy a blockchain-based testing environment. In this

environment, the mutation probability matrix of function codes and identifiers serves as the

Chenran Xi

47

input combination for triggering anomalies. Initial test cases are used to validate vulnerabilities.

If the data fields of all identifiers and function codes in the message domain display as "empty",

it confirms the presence of honeypot logic in the contract, requiring further detection of

vulnerability types in the honeypot contract.

Input: Initial test case set T, key opcode list K, mutation rounds R

Output: Vulnerability-triggering test case set V

Step 1. Initialize vulnerability-triggering test case set: V ← ∅

Step 2. For each mutation round r = 1 to R do

Step 3. For each test case test ∈ T do

Step 4. Identify overlapping message fields:

Let F_{overlap} be the set of message fields in test that contain opcodes

from K

Step 5. For each field f ∈ F_{overlap}, select mutation strategy:

 strategy(f) = random_mutation if risk(f) = high

 strategy(f) = boundary_testing if risk(f) = high

 strategy(f) = light_perturbation if risk(f) ∈ {medium, low}

 where risk(f) is determined by the opcode importance score

Step 6. Generate new test case: test' = mutate(test, strategy(f))

Step 7. Execute test' in local chain deployment environment

Step 8. If execution triggers abnormal state or "empty data field":

V ← V ∪ {test'}

Step 9. End for

Step 10. Update mutation factor probability matrix based on coverage feedback:

 M_{mut}^(r+1)←update_matrix(M_{mut}<sup>(r)

</sup>, coverage_data)

Step 11. End for

Step 12. Return V

Algorithm 1. Risk-Guided Fuzzing Mutation Algorithm for Honeypot Contract Detection.

3.3 Fine-grained Detection of Honey Pot Contracts

3.3.1 Overview of the overall testing process

The complete detection process, from opcode filtering to graph attention network

classification, forms a closed-loop chain, as illustrated in Figure 2. The first step involves

filtering key opcodes using an improved KOLSTM model, while generating suitable test cases

with the help of Fuzzing technology to explore potential interaction logic vulnerabilities in the

contract, providing core feature support for subsequent detection. The second step involves

using the filtered key opcodes as nodes in a graph structure, and the discovered interaction logic

vulnerabilities as connecting edges between nodes, to construct a source code graph structure

Research on Fine-grained Detection Method of Honey Pot Contracts Based on LSTM and

Fuzzing

48

that accurately represents the core features of the contract. The third step involves updating

each node vector based on the structural relationship matrix between nodes and edges, and then

aggregating all updated node vectors through a global accumulative pooling function to

generate a graph-level vector that comprehensively reflects the overall characteristics of the

contract. The fourth step involves inputting the graph-level vector into the fully connected layer

of the graph attention network, combining it with the cross-entropy loss function to minimize

the deviation between the predicted type and the actual type, completing model training and

precise classification of honeypot contract types, ultimately achieving fine-grained detection.

Step3: Global Graph-Level Vector Generation

3.1 Node Vector Update

- Structure matrix M updates

node embeddings h_v

3.2 Global Pooling

Aggregation

- Global sum pooling

operation Pooling(h_v)

3.3 Graph-Level Vector Output

- Output: Global contract vector

 _G

Step4: Graph Attention Network (GAT) Classification

4.1 Input Layer

- Input: Graph-level

vector _G

4.2 Fully Connected Layer

(FC)

- Map features to

classification space

4.3 Loss Function

Optimization

- Minimize prediction

deviation via cross-

entropy loss L_ce

4.4 Classification Output

- Output: Honeypot

contract type classification

result C

Step2: Contract Source Code Graph Construction

2.1 Graph Node

Construction

- Nodes V = Key opcode set

O

2.2 Graph Edge Construction

- Edges E = Vulnerability

correlation L

2.3 Feature Graph

Generation

- Output: Feature graph

G=(V,E)

Step1: Key Feature Mining

1.1 Key Opcode Screening

- Improved KOLSTM model

- Output: Key opcode set O

1.2 Vulnerability Logic Mining

- Fuzzing technology generates test cases

- Output: Interaction vulnerability set L

Closed-Loop Iterative Optimization

Feedback Classification Result C

- Analyze classification errors

Optimize Preceding Modules

- Adjust KOLSTM screening &

Fuzzing

Figure 2. Closed-Loop Linkage for Fine-Grained Detection of Honeypot Contracts

This process achieves a full-chain analysis from code feature extraction, interactive testing

to graph structure modeling, combining the advantages of static analysis and dynamic

verification. It can effectively identify covert honeypot logic that is only triggered under

specific transaction sequences.

3.3.2 Specific implementation process

To mitigate the impact of non-critical lexical elements in honeycomb contracts on contract

Chenran Xi

49

type identification, we leverage the filtered key operation codes derived from interaction logic

vulnerability mining to construct a source code structure diagram. Operation codes serve as

graph nodes, while logical vulnerabilities function as connecting edges. By analyzing the

structural relationship matrix between nodes and edges, we update the node vectors of contract

vulnerabilities [6]. The expression is as follows:

ℎ𝜀 = ∑ 𝑃𝜍𝜀 • 𝜓

𝑄

𝜀=1

In the above expression, 𝑄 denotes the number of structure graph nodes, 𝑃 represents the

mutation probability matrix, 𝜍𝜀 stands for the parameter matrix of the 𝜀-th node, 𝜓 refers to the

coverage rate of key opcodes in the contract, and ℎ𝜀 denotes the update vector of node 𝜀.

On this basis, the update vectors of all nodes are aggregated using the global cumulative

activation function to generate the graph-level vector 𝐻, which is given by:

𝐻 = 𝑅(ℎ𝜀|𝜅𝛿 ∈ 𝑉)

In the above expression, 𝑅 denotes the global cumulative activation function, 𝜅𝛿 represents

the 𝛿-th token in the contract, and 𝑉 denotes the token set.

The graph-level vector of the contract is fed into the fully connected layer of the graph

attention network, where a cross-entropy function is introduced to minimize the deviation

between the output vulnerability type and the actual type. This enables the training of the

classification network, ultimately determining the corresponding category for the honeypot

contract to be detected [7]. As shown in the following formula:

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝑇(𝑥) + ∑
1 − 𝜒

𝜉

𝜉

𝑐=1

In the above expression, 𝑇(𝑥) denotes the cross-entropy function, 𝜉 represents the total

number of vulnerable contract types, 𝜒 denotes the training sample subset, and 𝑂𝑢𝑡𝑝𝑢𝑡 denotes

the output vulnerable contract type.

The source code graph structure is constructed by exploiting critical operation codes and

interaction logic vulnerabilities. The global accumulation pooling function is used to update

and aggregate the vector of structural nodes, thereby generating graph-level vectors. These

vectors are then input into the graph attention network, where the cross-entropy loss function

is employed to output the type of honeypot contract, achieving fine-grained detection of

honeypot contracts.

Research on Fine-grained Detection Method of Honey Pot Contracts Based on LSTM and

Fuzzing

50

4. Case Study Analysis

4.1 Experimental Preparation

The experimental dataset used in this study is HD-DATA-NORMAL, containing 1,200

honeypot contracts that cover six distinct categories, as detailed in Table 2.

Table 2. Types of Honey Jar Contracts and Corresponding Instance Numbers

order

number

Honey Pot Contract Type Instance count core deception

1 Ultra-long hidden space 200 Hide key code with extra-long spaces

2 logical trap 200 Use state variable preset

3 Uninitialized pointer type 200 Using the default behavior of uninitialized

storage pointers in Solidity

4 inherited conflict 200 Variable Overwriting Caused by

Inheritance Conflict

5 Gambling game type 200 pseudorandom number generation

vulnerability

6 compiler exploit 200 The Error of Encoding the Empty String

Parameter by Compiler

Using AFL++ v4.15c as the fuzzing tool, 100 test cases were generated through smart

contract compilation and deployment. Ten test accounts were configured using a blockchain

simulator. The LSTM model was employed to decompose the account contract bytecode into

operation code vectors, constructing [contract address, operation code vector, label] triplets.

The input sequence length was set to 256, with the first five key operation code weights assigned

in order as 0.223,0.152,0.110,0.964, and 0.523. The batch size was 64, the training rounds were

50, and the queue size was 100. Based on the honeypot contract types shown in Table 2, the

attack process was manually simulated to verify the model's classification effectiveness.

4.2 Experimental Results

The proposed honeypot contract detection method, combined with the SBERT-CNN-

BiLSTM-Attention-based approach and the program slicing-graph neural network method,

were applied to identify contract vulnerabilities. Figure 3 presents the false positive rates for

these three methods across six distinct honeypot contract types.

Figure 3 clearly demonstrates that when applying the literature-based method to six specific

honeypot contract categories, the resulting false positive count significantly exceeds that of our

proposed method. This indicates that neither approach can accurately identify the specific

vulnerability types of these honeypots. In contrast, the design-based method achieves sub-3

false positives across all six contract types, enabling fine-grained detection. These results

validate our method's effectiveness in reducing misclassification risks while demonstrating high

Chenran Xi

51

detection accuracy and practical applicability.

2 3 4 51
1

6

11

16

21

26

Honeypot Contract Category Number

31

6

36

R
e
ad

in
g

\N
u

m
b
er

Our Method Literature[2]Literature[1]

Figure 3. Comparison of honeypot contract test results

5. Conclusion

This study develops an intelligent solution for fine-grained honeypot contract detection

through deep integration of LSTM temporal modeling and Fuzzing mutation testing techniques.

The approach employs LSTM networks to filter critical operation codes within contracts, while

Fuzzing test cases are utilized to identify specific vulnerability types. Experimental validation

demonstrates the method's reliability in honeypot contract detection. This achievement provides

a low-false-positive and highly interpretable detection tool for smart contract development,

facilitating the transition from passive response to proactive defense in smart contract security

technology. The research holds significant theoretical and practical value.

Future work can be further extended to honeypot detection in a multi-chain environment,

exploring collaborative attack patterns of cross-chain contracts, and investigating a hybrid

detection framework combining symbolic execution and deep learning to enhance the discovery

capability of zero-day honeypot logic. Additionally, consideration can be given to building an

open-source honeypot contract detection platform to promote the co-construction and sharing

of the industry's security ecosystem.

References

[1] He, D., Wu, R., Li, X., Chan, S., & Guizani, M. (2023). Detection of vulnerabilities of

blockchain smart contracts. IEEE Internet of Things Journal, 10(14), 12178-12185.

[2] Zhang Renlou, Wu Sheng, Zhang Hao, & Liu Fangyu. (2025). Slice-GCN: 基于程序切

片与图神经网络的智能合约漏洞检测方法 [Slice-GCN: An Intelligent Contract

Vulnerability Detection Method Based on Program Slicing and Graph Neural

Networks]. Journal of Cyber Security, 10(1), 105-118.[in Chinese]

[3] Zhang, L., Li, Y., Guo, R., Wang, G., Qiu, J., Su, S., ... & Tian, Z. (2024). A novel smart

Research on Fine-grained Detection Method of Honey Pot Contracts Based on LSTM and

Fuzzing

52

contract reentrancy vulnerability detection model based on BiGAS. Journal of Signal

Processing Systems, 96(3), 215-237.

[4] Zhang, J., Lu, G., & Yu, J. (2024). A Smart Contract Vulnerability Detection Method

Based on Heterogeneous Contract Semantic Graphs and Pre-Training

Techniques. Electronics, 13(18), 3786.

[5] Gu, M., Feng, H., Sun, H., Liu, P., Yue, Q., Hu, J., ... & Zhang, Y. (2022, May).

Hierarchical attention network for interpretable and fine-grained vulnerability detection.

In IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS) (pp. 1-6). IEEE.

[6] Li, L., Liu, Y., Sun, G., & Li, N. (2023). Smart contract vulnerability detection based on

automated feature extraction and feature interaction. IEEE Transactions on Knowledge

and Data Engineering, 36(9), 4916-4929.

[7] Liu Fangqing, Huang Han, Xiang Yi & Hao Zhifeng.(2023). 基于流形鸽群优化的智能

合约重入性漏洞检测方法研究 [Research on Intelligent Contract Reentrancy

Vulnerability Detection Based on Manifold Pigeon Swarm Optimization]. Scientia

Sinica(Technologica), 53(11),1922-1938. [in Chinese]

	1. Introduction
	2. Technical Framework and Research Overview
	2.1 Evolution of Smart Contract Security Detection Techniques
	2.2 Key Advances in Deep Learning for Contract Security Analysis
	2.3 Special Challenges in Honeypot Contract Detection
	2.4 Overall Technical Framework of This Paper
	2.5 Comparative Advantages Over Existing Methods

	3. Design of Fine-grained Detection Method for Honeycomb Contract
	3.1 Key Operation Code Screening of Honey Pot Contracts Based on LSTM
	3.2 Fuzzing-based Vulnerability Mining of Contract Interaction Logic
	3.3 Fine-grained Detection of Honey Pot Contracts
	3.3.1 Overview of the overall testing process
	3.3.2 Specific implementation process

	4. Case Study Analysis
	4.1 Experimental Preparation
	4.2 Experimental Results

	5. Conclusion
	References

